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Key soccer analytics task:
valuing actions

most existing soccer statistics 
value only one type of action
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Key soccer analytics task:
valuing actions

Vaep currently uses black box predictive models

This talk: using interpretable predictive models

??? 0.05Action

Interpretable 
model

0.05
Action

explanation



outline

1. Valuing actions with spadl and vaep

2. Estimating goal-scoring probabilities

3. Experiment

( Extra: evaluation in soccer analytics)



outline

1. Valuing actions with spadl and vaep

2. Estimating goal-scoring probabilities

3. Experiment

( Extra: evaluation in soccer analytics)



professional annotators produce 
Event stream data of soccer games
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Challenge:
Event stream data is hard to analyze

• Vendor-specific terminology

• Useless events

• dynamic information snippets

Half
Start

{“deeply”: 
{“nested”: 
{“json”: 
{“dictionaries”}}}}



SPADL is an event stream data format 
designed to facilitate data analysis

• Unifies event data from various vendors

• On-the-ball actions

• Fixed attributes
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CHALLENGE: valuing actions that 
do not directly affect the score

+- 1600 actions in a game

most common final score: 1 – 0

Goal



Example non-scoring action: 
Pass from Messi to Busquets

Pass starts here



action 𝑎𝑖 moves the game from 
state 𝑆𝑖−1 to state 𝑆𝑖

𝑉 𝑎𝑖 = 𝑉 𝑆𝑖 − 𝑉(𝑆𝑖−1)



valuing actions by estimating probabilities

a game state s is good for team t if it has

(1) A High short-term probability of team T scoring

(2) A Low short-term probability of team T conceding

𝑉 𝑆 = 𝑃𝑠𝑐𝑜𝑟𝑒𝑠 𝑆, 𝑇 − 𝑃𝑐𝑜𝑛𝑐𝑒𝑑𝑒𝑠 𝑆, 𝑇

𝑉 𝑎𝑖 = 𝑉 𝑆𝑖 − 𝑉(𝑆𝑖−1)
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task: estimate the probability of team t 
scoring after game state s

1. Features

2. Labels

3. Probabilistic classifier



Features that describe game state s

a) Simple features 
- Action type

- Result

- …

b) Complex features
- Distance to goal

- Time between actions

- …

c) Context features
- Goal difference 
(e.g., +2, -1)

CHE 2 – 0 MNU
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1 if team t scores in the next 10 actions

0 otherwise

… 10 minutes later …

Labels that capture the limited 
temporal influence of game state s

s pass goal

s goal

Probably related

Probably not

𝑆𝑐𝑜𝑟𝑒𝑠 𝑆, 𝑇 = ቊ



A simplified summary of 
Probabilistic classifiers

interpretable
Non-linear 

relationships

Logistic regression v x

xgboost x v

Generalized additive models v v
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Generalized Additive Models are a 
generalization of Logistic Regression

Task: Predict goal chance
using x,y-location

Logistic Regression:

G(e(scores)) = 0.04*x + 0*y + c

Generalized Additive Model:

G(e(scores)) = f1(x) + f2(y) + c 

Y

x



Generalized Additive Models are a 
generalization of Logistic Regression

Task: Predict goal chance
using x,y-location Y

x
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Experimental setup (1/2)

Task: Predict chance of scoring 
a goal AFTER GAME STATE S

Data: Premier league 2017/18 (TRAIN)
PREMIER LEAGUE 2018/19 (TEST)

Evaluation metric: Normalized brier score

s Goal?



Experimental setup (2/2)

Candidate Probabilistic classifiers: 
1. Logistic Regression
2. Generalized additive models
3. xgboost

Candidate Feature sets:
1. x,y (location only)
2. top-10 best features
3. 151 features (original vaep paper)

interpretable
complex

interpretable
complex



Normalized brier score per 
<classifier, feature set>-combination

X,y Top-10 151 features

Logistic regression 0.986 0.912 0.895

Generalized additive 
models

0.964 0.861 0.858

xgboost 0.964 0.860 0.856



Our predictive model should be 
interpretable and performant
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inspecting our predictive model 
with an example game state (1/10)

P(scores) = 0.049
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inspecting our predictive model 
with an example game state (10/10)

P(scores) = 0.049



https://github.com/ML-KULeuven/socceraction/

- pip install socceraction

- Example notebooks demonstrating 
spadl, vaep, and xt with free StatsBomb data

https://github.com/microsoft/interpret

- Recent implementation of generalized additive models

Online resources

https://github.com/ML-KULeuven/socceraction/
https://github.com/microsoft/interpret
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Proper evaluation can be an 
afterthought in soccer analytics

“all the models are carefully tuned and calibrated.”

“we focus not on the technical details, but rather 
the power of … in answering many important questions 
in the soccer analytics community.“

“we set the parameters … based on domain knowledge 
and an empirical analysis of the available data.”



->       > or      > ?AUROC:

Brier score:

Logarithmic loss:

Which Evaluation metric should I use 
for my probabilistic classifier?

+ - +-+
-



The choice of evaluation metric depends 
on the use case for the model output

AUROC:
Ranking / classifying examples

Brier score: 
summing / subtracting predicted probabilities

Logarithmic loss: 
multiplying / dividing predicted probabilities

People often get this wrong!



a baseline makes an evaluation 
metric more interpretable

Normalized brier score (model) =

A model that always predicts 
the class distribution

Brier score (model)
Brier score (baseline)

Baseline AUROC = random guessing (50%)

Baseline Brier score =  



Concluding thoughts

Bridging the gap between academia and soccer people 
is non-trivial -> interpretable models can help

When estimating probabilities: 
Try to understand what is happening 
under the hood and test your assumptions

When evaluating predictive models:
be careful and consider your use case


