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Abstract

Soccer analytics has seen an explosion of interest in the last decade. The success
of data analysis in other sports has driven soccer clubs and other stakeholders in
soccer to wonder if they could also deepen their understanding of the game by
analyzing data and translate this deepened understanding into tangible results
such as signing good players and winning matches. Consequently, more data
than ever is being collected in soccer. One prominent data source is event
stream data, which is collected by human annotators who watch video feeds of
soccer matches through special annotation software and rigorously describe all
on-the-ball actions performed on the pitch such as passes, dribbles, interceptions,
tackles, and shots.

While event stream data is an incredibly rich data source, gleaning useful soccer
insights from it has proven to be difficult in practice. One part of the problem
is the inherent nature of soccer. It is a fluid sport that involves many complex
interactions between players. Furthermore, soccer’s low-scoring nature and
susceptibility to chance make it hard to correlate player skill with match results.
Another part of the problem is event stream data being hard to analyze in
its raw form. Analysts typically have to deal with a number of issues such as
parsing complicated data structures, adapting to vendor-specific terminologies,
dealing with data sparsity, scaling to millions of data points, and incorporating
domain knowledge.

These issues have motivated researchers to apply techniques from the field
of artificial intelligence (AI) to event stream data, as these techniques are
often intended to be used semi-autonomously on large and complicated data
sets. Consequently, researchers have successfully used AI techniques such as
classification, reinforcement learning, pattern mining, and network analysis to
address soccer analytics tasks such as estimating shot quality, rating players,
and detecting tactics.

However, the existing literature on learning from event stream data with AI
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iv ABSTRACT

techniques shows a number of shortcomings. First, no efforts have been made to
address the representational challenges of event stream data, severely obstructing
the reproducibility of papers within the field. Second, no approach for valuing
on-the-ball actions considers the full context in which actions are performed or
recognizes the value of defensive actions such as tackles and clearances. Third,
existing works that capture the playing style of teams and players have not
sufficiently explored how to best model the locations and directions of actions;
instead rudimentarily dividing the pitch into zones or ignoring the spatial
component of event stream data altogether.

This dissertation makes three main contributions to the field of soccer analytics
that address these shortcomings. First, to better represent event stream data,
we define a new language that simplifies and unifies the data of different
event stream data vendors, alleviating many data engineering challenges and
encouraging the reproducibility of soccer analytics research. We also release a
software package that can convert raw event stream data of popular vendors
into this new language. Second, we propose a framework for assigning values
to on-the-ball actions that, compared to simpler metrics and possession-based
approaches, considers a more complete view of the context in which actions
occur. Our framework formalizes the intuition that all actions in a match
are performed with the intention of increasing the chance of scoring a goal
and/or decreasing the chance of conceding a goal. The latter point is what
allows our framework to recognize the value of defensive actions. Third, we
introduce a number of approaches that express the playing style of teams and
players based on where on the pitch they perform certain types of actions. Our
approaches improve over earlier work by modelling the spatial component of
event stream data in a data-driven manner using decomposition techniques such
as non-negative matrix factorization and mixture models.



Beknopte samenvatting

Voetbalanalyse heeft het afgelopen decennium een explosie aan interesse gekend.
Het succes van data-analyse in andere sporten heeft voetbalclubs en andere
belanghebbenden in het voetbal ertoe aangezet zich af te vragen of ze hun
inzichten in het spel kunnen verbeteren door data te analyseren en deze inzichten
om te zetten in concrete resultaten zoals het aantrekken van goede spelers en
het winnen van wedstrijden. Bijgevolg wordt er in het voetbal meer data dan
ooit verzameld. Een prominent voorbeeld is event stream data. Deze data wordt
verzameld door menselijke annotators die videofeeds van voetbalwedstrijden
bekijken via speciale annotatiesoftware en alle acties die spelers uitvoeren op
het veld - zoals passes, dribbels, intercepties, tackles en schoten - nauwkeurig
beschrijven.

Hoewel event stream data een enorm rijke databron is, zijn er een aantal
aspecten die het moeilijk maken om er nuttige voetbalinzichten uit te halen.
Een deel van het probleem is dat voetbal een vloeiende sport is die veel complexe
interacties tussen spelers bevat. Bovendien maken de weinige goals in voetbal en
de invloed van geluk het moeilijk om de vaardigheid van spelers te correleren met
wedstrijdresultaten. Een ander deel van het probleem is dat event stream data
moeilijk te analyseren is in zijn ruwe vorm. Analisten moeten doorgaans omgaan
met een aantal uitdagingen zoals het verwerken van ingewikkelde datastructuren,
het aanpassen van hun code aan leverancierspecifieke terminologieën, het omgaan
met ijle data, het opschalen naar miljoenen datapunten en het gebruiken van
domeinkennis.

Deze uitdagingen hebben onderzoekers ertoe geleid om technieken uit het veld
van artificiële intelligentie (AI) toe te passen op event stream data, aangezien
deze technieken vaak ontwikkeld zijn met de bedoeling om semi-autonoom
toegepast te worden op grote en gecompliceerde datasets. Onderzoekers hebben
met succes AI-technieken zoals classificatie, patroonanalyse en netwerkanalyse
gebruikt om voetbalanalysetaken zoals het inschatten van de kwaliteit van een
schot, het beoordelen van spelers en het detecteren van tactieken aan te pakken.
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Bestaande literatuur over het leren uit event stream data met AI-technieken
vertoont echter een aantal tekortkomingen. Ten eerste zijn er geen pogingen
ondernomen om de uitdagingen op het gebied van data-engineering van event
stream data aan te pakken, waardoor de reproduceerbaarheid van papers binnen
het veld wordt belemmerd. Ten tweede bestaan er geen methodes voor het
waarderen van acties die rekening houden met de volledige context waarin
acties worden uitgevoerd of die de waarde van defensieve acties zoals tackles
en intercepties erkennen. Ten derde hebben bestaande werken niet voldoende
onderzocht hoe de locaties en richtingen van acties het best kunnen worden
gemodelleerd bij het analyseren van de speelstijl van teams en spelers. De
meeste methodes delen het veld op in een aantal simpele zones of negeren de
ruimtelijke component van event stream data volledig.

Dit proefschrift levert drie belangrijke bijdragen aan het veld van voetbalanalyse
die deze tekortkomingen proberen aan te pakken. Ten eerste, om event stream
data beter te kunnen analyseren, construeren we een nieuwe taal die de data
van verschillende leveranciers van event stream data vereenvoudigt en verenigt.
Deze taal verlicht veel uitdagingen op het gebied van data-engineering en
moedigt de reproduceerbaarheid van voetbalanalyse-onderzoek aan. Ten tweede
introduceren we een methode voor het toekennen van waarden aan acties die,
vergeleken met eenvoudigere statistieken en methodes gebaseerd op balbezit,
een vollediger beeld van de context waarin acties plaatsvinden beschouwt. De
methode gebruikt een eenvoudige en elegante formule die de intuïtie formaliseert
dat alle acties in een wedstrijd worden uitgevoerd met de bedoeling de kans op
het scoren van een doelpunt te verhogen en / of de kans op een tegendoelpunt
te verlagen. Deze laatstgenoemde eigenschap stelt de methode in staat om
de waarde van defensieve acties te erkennen. Ten derde stellen we een aantal
methodes voor die de speelstijl van teams en spelers uitdrukken op basis van
waar op het veld ze bepaalde soorten acties uitvoeren. De verbetering van
deze methodes ten opzichte van eerder werk is dat ze de ruimtelijke component
van event stream data op een datagedreven manier modelleren met behulp
van ontbindingstechnieken zoals niet-negatieve matrixfactorisatie en mixture
modellen.
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Chapter 1

Introduction

Soccer analytics has seen an explosion of interest in the last decade. The success
of data analysis in other sports - with Billy Beane’s Moneyball as the canonical
example [103] - has driven soccer clubs and other stakeholders in soccer to
wonder if they could also deepen their understanding of the game by analyzing
data and translate this deepened understanding into tangible results such as
signing good players and winning matches.

Simultaneously, soccer clubs are also collecting more data than ever. No longer
limited by simple match sheet data, which provides high-level match information
such as line-ups, substitutions, goals, and cards, soccer clubs are exploring richer
data sources. Three particularly prominent types of data are:

Event Stream Data Event stream data is collected by human annotators
who watch video feeds of soccer matches and describe all on-the-ball
actions players perform on the pitch such as passes, dribbles, interceptions,
tackles, and shots. Per event, annotators record properties such as the
timestamp, location, type, (e.g., pass, dribble, shot), involved player, etc.
Depending on the type of the action, additional information is annotated
such as the end location of a pass or the outcome of a tackle. Event stream
data is generated by companies such as Opta Sports [126], Wyscout [185],
StatsBomb [165].

Optical Tracking Data Tracking data is a highly detailed data source that is
collected by optical tracking camera systems that are physically installed
in stadiums. These camera systems record the locations of all players and
the ball at a high frequency of up to 100 Hz [4]. Examples of companies
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that record tracking data are ChyronHego [36], STATS Perform [164],
BallJames [10], Metrica Sports [120], and Second Spectrum [154].

Monitoring Data Monitoring data is collected from players by fitting them
with wearable technology that contain sensors such as accelerometers,
gyroscopes, heart rate monitors, and GPS. This data is collected by
companies such as Catapult [31], STATSports [166], and many others [164,
71, 135, 148]. Monitoring data is also often augmented with questionnaire
data (e.g., fatigue ratings, muscle soreness scores) and medical data
from physical testings (e.g., flexibility, speed, maximum rate of oxygen
consumption). While other data sources are only collected during matches,
monitoring data is also collected off-match (e.g., rest periods and training
sessions).

This data can be used to answer a multitude of questions relevant to soccer
clubs such as:

1. “Should a player shoot or pass in a particular game situation?”

2. “Is a player who is currently part of the starting line-up contributing
enough to their team or should they be benched?”

3. “What tactics does an opposing team commonly employ to score goals?”

4. “How well does a prospective player’s profile fit what the club coach is
looking for?”

5. “How should a club schedule its players’ trainings in order to optimize
their physical progress and minimize risk of injury?”

The first and second question are examples of hard decisions that are taken
every day at soccer clubs. One way to take these decisions is based on objective
information such as the values of specific actions. The third and fourth question
have a less clear yes/no answer; they involve understanding the style of play of
teams and players. The fifth question is related to health [92] and falls out of
the scope of this dissertation.

To answer the first four questions related to value and style, event stream data
is the most practical data source. Match sheet data is often too simple to glean
non-trivial insights from. Tracking data is more detailed and extensive than
event stream data in its description of a match, but it is also harder to analyze,
more expensive, and only available for a restricted number of competitions.
Finally, monitoring data is mostly relevant for analyzing the general health of
athletes.
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While event stream data is a more practical fit than other data sources to
capture interesting soccer insights such as a player’s skill or a team’s tactics,
this does not make the task easy. The reason why it is hard to learn concepts
such as value and style from soccer event stream data is two-fold.

On the one hand, soccer as a sport has a number of characteristics that makes it
inherently harder to analyze than many other sports. First, soccer is extremely
fluid (i.e., it cannot be divided into clear phases like other sports such as
baseball or tennis). Second, soccer involves many complex interactions such
as passes between teammates and tackles of opponents [115]. Third, players
have particularly varied roles within their team and these roles are constantly
in flux depending on factors such as the time, the score, and where on the pitch
the ball is currently in play [109]. Finally, because soccer is low-scoring and
consequently more luck-based [136], player skill and team skill are often not as
clearly correlated with match results as they are in other sports.1

On the other hand, event stream data is plagued by a number of challenges that
make it hard to analyze. One data engineering challenge is that event stream
data was not designed specifically for data analysis, but also for other use cases
such as informing broadcasters. Another data engineering challenge is that each
vendor uses their own unique terminology and data structure to describe events,
limiting the wider applicability of analysis efforts. Finally, event stream data
often contains optional information snippets that provide additional information
on events but are difficult to automatically parse.

Furthermore, beyond these representational challenges, the analysis is hindered
by other challenges more inherent to event stream data. First, events have both
discrete (e.g., type, outcome) and continuous (e.g., time, location) properties.
Most analysis techniques were designed to work exclusively on either discrete
or continuous data and handle this mix of domains poorly. Second, there is
very little exact repetition in sequences of game play. That is, the same players
rarely perform the same actions in the same order in the same location. This
makes generalizing over multiple data points difficult as it is often unclear when
two actions should be considered to be similar or not. Third, event stream data
only gives a partial picture of game play. A crucial piece of context that is
missing from event stream data is the locations of the other 21 players on the
field that are currently not in possession of the ball.

Many of the challenges listed above are non-trivial to address. Since most soccer
clubs focus more on winning their next match than on being good at data

1While these characteristics make soccer hard to analyze, they are also part of the appeal
of the sport. For example, the low-scoring and luck-based nature of soccer make it a great
spectator sport, as there is always a chance that an underdog can turn a match around in its
final minutes.
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analysis, they often lack the expertise needed to properly leverage event stream
data. This means that in practice soccer clubs usually default to tried and
tested approaches for their soccer research such as looking at simple metrics
like goals and assists when scouting new players or employing video analysts
who watch many hours of match footage to prepare for an upcoming match.

However, tools that can (partially) replicate, complement, or even transcend
human soccer insights have the potential to be extremely valuable to soccer
clubs. For example, scouts at soccer clubs are often flooded by the sheer volume
of prospective players. An algorithm that assesses the value of players from
event stream data can help funnel this set of prospective players to the most
promising top-10 that are worthy of the scout’s further attention. Similarly,
video analysts can only watch so much match footage in a single day to help
their team prepare for an upcoming match. An algorithm that can capture the
style of players and teams from event stream data can empower video analysts
to produce more substantive opponent reports that help teams prepare for their
upcoming matches.

Analysis techniques from the research field of artificial intelligence (AI) are a
natural fit to build these tools as these techniques are often intended to be used
semi-autonomously on large and complicated data sets. Hence, there has been
an explosion of interest in applying AI techniques to automatically analyze
event stream data for a variety of tasks such as estimating shot quality [108, 27,
88, 6], rating players [127, 51, 159], and detecting tactics [174, 175, 83]. While
tremendous progress has been made in the field of soccer analytics in the last
years, we have identified three important shortcomings in the literature that
respectively concern (1) representing event stream data, (2) valuing on-the-ball
actions, and (3) capturing the playing style of teams and players.

First, no efforts have been made to address the representational and data
engineering challenges of event stream data (e.g., complicated data structures
and vendor-specific terminologies). Consequently, researchers often spend
considerable efforts writing one-off preprocessing scripts (which are never
publicly released) to extract the information relevant to their analysis.
Additionally, their analysis results are then tied to one specific vendor’s data,
which severely obstructs the reproducibility of all papers within the field of
soccer analytics.

Second, most approaches that value on-the-ball actions do not leverage event
stream data to its fullest extent. Either they only value shots [108, 27, 6, 110]
- which account for less than 2% of a player’s actions - or they only consider
an action’s location [121, 159, 178, 84, 20] and throw away most of the action’s
context (e.g., the goal difference, time remaining, speed of play). Additionally,
these approaches only consider an action’s offensive value (i.e., its effect on
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the likelihood of scoring a goal) and thus are unable to recognize the value
of defensive actions that reduce the risk of conceding a goal (e.g., tackles,
clearances).

Third, existing works that capture the playing style of teams and players have not
explored how to properly model the spatial component of event stream data (i.e.,
the locations and directions of actions). In practice, they either rudimentarily
divide the pitch into simple zones to model an action’s location [37, 174, 175]
or ignore the spatial component altogether [12, 132, 83]. However, the locations
and directions of actions are a fundamental aspect of playing style. For example,
these properties are needed to capture the difference between players who play
probing forward passes deep into the opponent’s half and players who give safer
lateral passes to the flanks.

1.1 Dissertation Statement

In this dissertation we use techniques from the field of artificial intelligence to
learn value and style from soccer event stream data. Here, learning value means
assigning values to individual on-the-ball actions (which can be aggregated to
also value players and teams), while learning style means capturing the playing
style of teams and players. Concretely, we aim to address the aforementioned
gaps in the existing literature and answer the following questions.

1. How can event stream data be simplified and unified between different
vendors?

2. Is there a way to automatically value on-the-ball actions while taking into
account more context than just their locations as well as consider their
defensive value?

3. Can AI techniques improve how the spatial component of event stream
data is modeled when capturing the playing style of teams and players?

1.2 Contributions and Structure of the Dissertation

This section summarizes the structure of this dissertation and its three
contributions.

We provide background information in Chapter 2, introduce new representations
for event stream data in Chapter 3, value on-the-ball actions in Chapters 4-5,
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capture the playing style of teams and players in Chapters 6-8, and finally offer
our conclusions in Chapter 9.

1.2.1 Background

Chapter 2 details the necessary background to understand the subsequent
chapters. It first introduces the game of soccer and its three most common
data sources. Next, the chapter discusses various techniques from the research
field of artificial intelligence that are used in later chapters. Finally, the chapter
provides a bird’s-eye view on the soccer analytics research field. Parts of this
chapter are based on the following publication:

Van Haaren, J., Robberechts, P., Decroos, T., Bransen, L., and
Davis, J. Analysing Performance and Playing Style using Ball Event Data.
Football Analytics: Now and Beyond. A Deep Dive into the Current State of
Advanced Data Analytics. (2019), 36–47

1.2.2 Contribution 1: Representing Event Stream Data

Chapter 3 discusses how to best represent event stream data. It first touches
on the data engineering challenges that arise when processing event stream data
in its raw form. Next, the chapter introduces SPADL and Atomic-SPADL,
which are two new languages to describe on-the-ball player actions that simplify
and unify the event stream data of different vendors. Finally, the chapter
discusses a number of challenges inherent to event stream data that arise when
applying techniques from the field of artificial intelligence. Implementations of
SPADL and Atomic-SPADL are publicly available at https://github.com/ML-
KULeuven/socceraction. Parts of this chapter are based on the following
publication and blog post:

Decroos, T., Bransen, L., Van Haaren, J., and Davis, J. Actions Speak
Louder than Goals: Valuing Player Actions in Soccer. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (New York, NY, USA, 2019), KDD ’19, ACM, pp. 1851–1861

Decroos, T., Robberechts, P., and Davis, J. Introducing Atomic-SPADL:
A New Way to Represent Event Stream Data. DTAI Sports Analyics Lab Blog,
2020. https://dtai.cs.kuleuven.be/sports/blog/introducing-atomic-
spadl-a-new-way-to-represent-event-stream-data

https://github.com/ML-KULeuven/socceraction
https://github.com/ML-KULeuven/socceraction
https://dtai.cs.kuleuven.be/sports/blog/introducing-atomic-spadl-a-new-way-to-represent-event-stream-data
https://dtai.cs.kuleuven.be/sports/blog/introducing-atomic-spadl-a-new-way-to-represent-event-stream-data
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1.2.3 Contribution 2: Learning Value

This part of the dissertation deals with learning value from soccer event stream
data. It attempts to answer the following question: “What is the value of an
action in a soccer game?” In essence, we value an action by estimating its
expected impact on the scoreline.

Chapter 4 introduces STARSS, which is a technique to first assign a value
to a phase in a soccer game based on outcomes of similar phases and then
distribute the value of that phase over its constituent actions. This chapter is
based on the following publication:

Decroos, T., Van Haaren, J., Dzyuba, V., and Davis, J. STARSS: A
Spatio-Temporal Action Rating System for Soccer. In Machine Learning and
Data Mining for Sports Analytics ECML/PKDD 2017 workshop (2017)

Chapter 5 introduces VAEP, which is a framework for valuing all on-the-ball
actions in soccer using a probabilistic classifier. VAEP values an action by
assessing the change in probability of a team scoring and conceding in the near
future as a result of that action moving the game from one game state to the other.
An implementation of VAEP is publicly available at https://github.com/ML-
KULeuven/socceraction. This chapter is based on the following publications:

Decroos, T., Bransen, L., Van Haaren, J., and Davis, J. Actions Speak
Louder than Goals: Valuing Player Actions in Soccer. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (New York, NY, USA, 2019), KDD ’19, ACM, pp. 1851–1861

Decroos, T., and Davis, J. Interpretable Prediction of Goals in Soccer. In
AAAI 2020 Workshop on Artificial Intelligence in Team Sports (2020)

Decroos, T., Bransen, L., Van Haaren, J., and Davis, J. VAEP:
An Objective Approach to Valuing On-the-Ball Actions in Soccer (Extended
Abstract). In Proceedings of the 29th International Joint Conference on Artificial
Intelligence (2020), AAAI Press

1.2.4 Contribution 3: Learning Style

This part of the dissertation deals with learning style from soccer event stream
data. In essence, we attempt to capture the playing style of teams and players
by expressing where on the pitch they tend to perform certain types of actions.

Chapter 6 introduces Tactics Discovery: an approach to mine patterns
in soccer event stream data and characterize teams by their most frequent

https://github.com/ML-KULeuven/socceraction
https://github.com/ML-KULeuven/socceraction
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patterns. More specifically, the chapter studies how event stream data can best
be converted into a format compatible with popular sequential pattern mining
algorithms. This chapter is based on the following publication:

Decroos, T., Van Haaren, J., and Davis, J. Automatic Discovery of
Tactics in Spatio-Temporal Soccer Match Data. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining
(2018), pp. 223–232

Chapter 7 introduces Player Vectors: a method to describe players’ playing
style in a small vector by factorizing the spatial heatmaps of players’ passes,
dribbles, crosses, and shots. This chapter is based on the following publication:

Decroos, T., and Davis, J. Player Vectors: Characterizing Soccer Players’
Playing Style from Match Event Streams. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases (2019), Springer

In both Chapters 6 and 7, the sparsity of event stream data (i.e., players rarely
perform the same action in the same location more than once) is identified
as a major challenge. Chapter 8 introduces an approach to overcome this
sparsity: SoccerMix. Soccermix is a mixture-models-based approach to soft
cluster actions in event stream data based on their type, location, and resulting
ball direction. Players and teams can then be represented in terms of which
clusters of actions they perform most often. An implementation of SoccerMix
is publicly available at https://github.com/ML-KULeuven/soccermix. This
chapter is based on the following publication:

Decroos, T., Van Roy, M., and Davis, J. SoccerMix: Representing Soccer
Actions with Mixture Models. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases (2020), Springer

1.2.5 Conclusion

Chapter 9 summarizes the contributions presented in this dissertation,
discusses some general lessons learned from the perspective of both soccer
analytics and artificial intelligence, and provides possible directions for future
work.

1.3 Other Research Conducted

To present a coherent story, this dissertation focuses on six research projects
that produced first-author publications, were conducted exclusively over the

https://github.com/ML-KULeuven/soccermix
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course of my PhD, and concern learning either value or style from soccer event
stream data. However, these six research projects are only a subset of my
contributions during my PhD. This section gives a short summary of my other
publications.

Peer-reviewed Conference Papers

Decroos, T., Dzyuba, V., Van Haaren, J., and Davis, J. Predicting
Soccer Highlights from Spatio-Temporal Match Event Streams. In Proceedings
of the Thirty-First AAAI Conference on Artificial Intelligence (2017), pp. 1302–
1308

This paper presents the POGBA algorithm [47] for automatically predicting
highlights in soccer matches from event stream data. The paper leverages the
intuition that highlights in soccer matches often concern situations with a higher
chance of scoring than usual. POGBA first estimates the probability of a game
state leading to a shot, and then that of a possible shot resulting in a goal.
Finally, a peak detection algorithm is applied to the predicted goal probabilities
to detect the highlights of a soccer game. We compared the highlights predicted
by POGBA with those of real highlights collected by a sports website and found
that POGBA outperforms a number of baseline algorithms in terms of precision
and recall. This paper is not included in this PhD dissertation because the
research for it was mostly performed as part of my Master’s thesis at KU Leuven.
However, this paper served as the inspiration for later action valuing systems
that are discussed in this dissertation such as STARSS [51] and VAEP [42].

Decroos, T., Schütte, K., De Beéck, T. O., Vanwanseele, B., and
Davis, J. AMIE: Automatic Monitoring of Indoor Exercises. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases (2018),
Springer, pp. 424–439

This paper presents AMIE [49], a machine learning approach for automatically
monitoring the execution of commonly used rehabilitation exercises using the
Kinect, a lowcost and portable 3D-camera system. This paper contributed with
respect to existing work by being one of the first to comprehensively detail
the collected data set, describe the used classification system in depth, report
quantitative results about the approach’s performance, and publicly release
both the collected data set and used software tools. AMIE was evaluated on
a data set of ten test subjects who each performed six sets of ten repetitions
of three commonly used rehabilitation exercises (i.e., squat, forward lunge and
side lunge). AMIE detected the type of exercise with 99% accuracy and the
type of mistake that was made with 73% accuracy.
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Peer-reviewed Workshop Papers

Vroonen, R., Decroos, T., Van Haaren, J., and Davis, J. Predicting
the Potential of Professional Soccer Players. In Machine Learning and Data
Mining for Sports Analytics ECML/PKDD 2017 workshop (2017), vol. 1971,
pp. 1–10

This paper presents APROPOS [181], a system to predict the potential of
professional soccer players. We developed and evaluated the APROPOS
projection system which predicts a player’s future skill levels using a k-nearest
neighbors approach. We introduced metrics to measure the similarities between
players and methods to predict a player’s future skill level from these similarities.
When applied to the expert ratings of player skills on the SoFIFA.com website,
our best model obtained a mean absolute error of 2.15 on skills rated from 0 to
100.

Geerts, A., Decroos, T., and Davis, J. Characterizing Soccer Players’
Playing Style from Match Event Streams. In Machine Learning and Data
Mining for Sports Analytics ECML/PKDD 2018 workshop (2018), vol. 2284,
Springer, pp. 115–126

In this paper, we construct player vectors by transforming sets of events from
match stream event data to fixed-size feature vectors using non-negative matrix
factorization [72]. These player vectors offer a complete view of a player’s
playing style, are constructed in a purely data-driven manner, are human-
interpretable and can be used in machine learning systems such as clustering
and nearest neighbor analysis. We presented a number of use cases in player
type discovery, scouting, and player development to show the potential of this
approach. This workshop paper is the precursor to our paper on player vectors
that was published at the 2019 ECML/PKDD conference [44] and is discussed
in Chapter 7.

Verstraete, K., Decroos, T., Coussement, B., Vannieuwenhoven,
N., and Davis, J. Analyzing Soccer Players’ Skill Ratings Over Time Using
Tensor-Based Methods. In Proceedings of the 6th International Workshop on
Machine Learning and Data Mining for Sports Analytics at ECML/PKDD 2019
(2019), Springer

In this paper, we made three contributions to the field of soccer analytics. First,
we highlighted a variety of challenges that arose while processing player skill
data from the SoFIFA.com website. Second, we explored the SoFIFA data
tensor using the canonical polyadic decomposition (CPD) in order to extract
interpretable latent structures. We showed how these latent structures group
together related skills, how they evolve as players age, and how each player

SoFIFA.com
SoFIFA.com
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can be summarized as a linear combination of these latent structures. Third,
we employed the Tucker decomposition of a tensor in order to project how a
specific player’s skills will evolve as he ages.

Van Roy, M., Robberechts, P., Decroos, T., and Davis, J. Valuing
On-the-Ball Actions in Soccer: A Critical Comparison of xT and VAEP. In
AAAI 2020 Workshop on Artificial Intelligence in Team Sports (2020)

Expected Threat (xT) [159] and Valuing Actions by Estimating Probabilities
(VAEP) [42] are two prominent approaches for the important task of valuing
actions in a soccer match. In this paper, we performed a critical comparison
of these two approaches, conceptually, qualitatively, and quantitatively. Key
differences arise in how each approach represents the game state and what actions
are valued. These lead to interesting differences such as VAEP better capturing
the risk-reward trade-off of actions and xT being more robust. Importantly,
both metrics produce rankings that deviate from those produced by considering
traditional metrics (goals or assists). Hence, they provide additional insights
into player performance.





Chapter 2

Background

In this chapter, we briefly discuss the sport of soccer, the three most prominent
types of data collected in soccer matches, touch upon some techniques from
Artificial Intelligence that will be used in this dissertation, and provide an
overview of the current state of the art in soccer analytics. Sections 2.2, 2.4.2
and 2.4.4 in this chapter are based on the following publication [176]:

Van Haaren, J., Robberechts, P., Decroos, T., Bransen, L., and
Davis, J. Analysing Performance and Playing Style using Ball Event Data.
Football Analytics: Now and Beyond. A Deep Dive into the Current State of
Advanced Data Analytics. (2019), 36–47

2.1 Soccer

Soccer is a ball sport played between two teams of eleven players on a grass
pitch (Figure 2.1). The objective in soccer is to score goals by getting the ball
into the opponent’s goal. A match is won by the team that scores the most
goals. Each team consists of ten outfield players and one goalkeeper. Outfield
players mostly use their feet and head to move the ball from one place on the
pitch to another, while goalkeepers are the only players that are allowed to
touch the ball with their hands and arms in a designated area of the pitch.

13
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Figure 2.1: A 105m x 68m soccer field.

2.2 Data Sources of Soccer Matches

Soccer clubs are collecting increasing amounts of data during matches. As shown
in Figure 2.2, the technical data that is currently collected during matches can
be broadly divided into three types: match sheet data, event stream data, and
tracking data. Match sheet data provides high-level information about matches
such as line-ups, substitutions, goals and cards. Event stream data describes the
actions that players perform with the ball such as passes, dribbles, interceptions,
tackles and shots. It is collected by human annotators who match video footage
of matches and is sold by vendors such as Opta Sports [126], Wyscout [185],
and StatsBomb [165]. Tracking data provides the exact spatial locations of
the players and the ball at all times during a match. It is collected by optical
tracking camera systems that are physically installed in stadiums and is sold by
vendors such as ChyronHego [36], STATS Perform [164], BallJames [10], and
Second Spectrum [154].

These three types of soccer data differ not only in their granularity but also
in their availability. Match sheet data, which provides only limited high-level
summaries about what happened in a soccer match, is available for virtually
all professional and semi-professional soccer matches in the world. In contrast,
tracking data, which provides the highest level of detail possible, is available
only for a restricted number of competitions, mostly top divisions of the better-
ranked European countries. Interestingly, event stream data, which attempts to
strike a balance between the limited match sheet data and the detailed tracking
data, has become widely available in recent years.
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Figure 2.2: The data collected about soccer games can be broadly divided into
three types: match sheet data, event stream data and optical tracking data.
Event stream data strikes a balance between match sheet data and tracking
data in terms of granularity and availability. © Pieter Robberechts [176].

Event stream data has become an increasingly popular data source for developing
soccer analytics tools for four reasons. First, event stream data is easier
to process and analyze than tracking data due to its smaller volume and
easier structure. Second, event stream data is extremely interesting for player
recruitment purposes due to its wide coverage of players in smaller competitions
as well as important youth competitions. Third, event stream data can be
purchased from specialized companies, whereas tracking data is typically only
available to the teams in the league. Fourth, event stream data is becoming
increasingly information rich. In addition to describing the actions with the
ball, data collection companies have recently started registering the locations of
the relevant players at the time of key events such as shots.

2.3 Artificial Intelligence Techniques

In this section we introduce a number of techniques from the field of artificial
intelligence that will be applied to soccer event stream data in later chapters of
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Figure 2.3: Illustration of how Dynamic Time Warping warps two sequences to
match each other as closely as possible. © Wannes Meert [118].

this dissertation.

2.3.1 Dynamic Time Warping

Dynamic Time Warping (DTW) is a state-of-the-art distance measure for
time-dependent sequences [123]. Unlike basic Euclidean distance, DTW does
not require that sequences have the same length and is insensitive to minor
mismatches between sequences, such as delays or shifts. Intuitively, the
sequences are warped in a nonlinear fashion to match each other (Figure 2.3).
Given two univariate numeric sequences [a1, . . . , an] and [b1, . . . , bm], DTW
typically employs a dynamic programming approach to evaluate the costs of all
possible alignments. The DTW distance is the cost associated with the best
alignment (i.e., the alignment with the lowest total cost). One way to compute
the DTW-distance between two sequences is to construct a cost-matrix C where

Ci,j = |ai − bj |+ min{Ci−1,j , Ci−1,j−1, Ci,j−1} (2.1)

and Cn,m is the DTW-distance.
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In the context of soccer analytics this technique is useful for identifying similar
phases in event stream data as DTW can take into account that not all phases
have the same length. Examples of this approach are given in Chapters 4 and 6.

2.3.2 Binary Probabilistic Classification

One of the most common tasks in artificial intelligence is learning a binary
predictive function from data. The task can be described as follows: given a
dataset D with instances of the form (x, y) with examples x ∈ X and binary
labels y ∈ {0, 1}, learn a function f : X → {0, 1} that can be used to predict
the label of any instance x [17]. The instances (x, 1) are commonly referred
to as positive examples, while the instances (x, 0) are commonly referred to as
negative examples.

In the case of binary probabilistic classification, this task is generalized from
learning a binary function f : X → {0, 1} to learning a probabilistic function
P : X → [0, 1] that for any instance x can predict the probability of that instance
having the positive class label 1. The most common classification models to
learn such a probabilistic function are logistic regression [130], gradient boosted
decision trees [35], and neural networks [5].

An example of this task in the context of soccer analytics is predicting (the
probability of) whether a given shot will result in a goal or not based on some
attributes that describe the shot (e.g., location). In this case the positive
examples are scored goals, while the negative examples are shots that missed
or were saved by the keeper. A model that addresses this specific task is often
referred to as an expected-goals model as the model predicts how many goals
can on average be expected from a particular shot. We discuss expected-goals
models more in-depth in Section 2.4.2.

2.3.3 Sequential Pattern Mining

Pattern mining is a task within the field of artificial intelligence that focuses
on discovering interesting, useful, and unexpected patterns in databases [68].
It emerged in the 1990s with the introduction of the Apriori algorithm [2],
which was designed to find frequent item sets (i.e., groups of items frequently
appearing together) in a database of customer transaction. For example, the
Apriori algorithm can discover the pattern {milk, chocolate_cookies} in a retail
store database, indicating that these products are often bought together by
customers [68].
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A downside of many popular pattern mining algorithms is that they ignore the
sequential ordering of events. If such pattern mining algorithms are applied
to data where the sequential ordering of events is relevant to the data, they
may fail to discover important patterns or find nonsensical patterns that are
useless in practice. To address this, the task of sequential pattern mining was
proposed [3]. This task focuses on discovering interesting subsequences in a set
of sequences of item sets, where the interestingness of a subsequence can be
measured in terms of various criteria such as its occurrence, frequency, length,
and profit [68].

Some of the most popular algorithms to discover sequential patterns in sequence
databases are GSP [163], Spade [188], PrefixSpan [131], Spam [8], CM-Spam [66],
and CM-Spade [66] (see Fourier-Viger et al.’s “A Survey on Sequential Pattern
Mining” [68] for a complete overview). These algorithms take as input a set
of sequences and a chosen minimum support threshold; and output the set of
frequent sequential patterns. The difference between these algorithms lies not
in their output, as there is always only one correct solution to a pattern mining
query, but in their efficiency at discovering the patterns through specialized
data structures and search strategies.

In Chapter 6, we apply sequential pattern mining algorithms to soccer event
stream data by converting actions to item sets that detail their most important
properties.

2.3.4 Non-Negative Matrix Factorization

Non-Negative Matrix Factorization (NMF) can be seen as the task of
decomposing a non-negative matrix V ∈ Rn×m

+ into two non-negative matrix
factors W ∈ Rn×k

+ and H ∈ Rk×m
+ , where typically k � {m,n}, such that:

V ≈WH. (2.2)

When V is a matrix that describes m examples with n features each, the k
columns of W are often referred to as the "components" of the factorization,
while the m columns in H are often referred to as the "encodings" of the m
examples. The matrices W and H can be constructed by solving the following
minimization problem:

min
W,H
‖V −WH‖F subject to W,H ≥ 0 (2.3)

where ‖‖F is the Frobenius norm of a matrix.

Compared to Principal Components Analysis (PCA) (which is similar to NMF
but relaxes the non-negativity constraint), NMF has been shown to learn a
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Figure 2.4: When decomposing a data set of face images, Non-Negative Matrix
Factorization (NMF) learns a parts-based representation of faces, while Principal
Component Analysis (PCA) learns a less interpretable holistic representation.
Positive values are illustrated with black pixels and negative values with red
pixels. Figure adapted from “Learning the Parts of Objects by Non-Negative
Matrix Factorization” by Daniel Lee & Sebastian Seung [102].

more parts-based representation of a matrix with more sparse components
and encodings [102] (Figure 2.4). Additionally, the components are also often
more human-interpretable than those of other factorization techniques. This
is because PCA’s components are used in linear combinations that generally
involve complex cancellations between positive and negative numbers, while
NMF’s components can only be added together and thus require individual
meanings without posterior modifications [102].

In Chapter 7, we use NMF to decompose the heatmaps of players. Heatmaps
are matrices that detail where on the pitch a player tends to perform certain
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actions. They are constructed by laying a grid over the field and counting per
grid cell how often the player performed an action in that grid cell.

2.3.5 Mixture Models

Mixture models are probabilistic models that assume that all data points of a
data set are generated from a mixture of a finite number of distributions with
unknown parameters [150]. Formally, a mixture model calculates the probability
of generating observation x as:

p(x) =
k∑

j=1
αj · Fj(x|Θj) (2.4)

where k is the number of components in the mixture model, αj is the
probability of the jth component, and Fj is a probability distribution or density
parameterized by Θj for the jth component. Usually, mixture models are fitted
to a data set using the well-known Expectation-Maximization algorithm [117].
Intuitively, mixture models can be thought of as a soft clustering variant of
k-means clustering.

The most common type of distribution to be used with mixture models is a
Gaussian distribution (Figure 2.5). However, mixture models can work with any
distribution that has a probability density function F and update equations to
estimate the parameter set Θ. One example of a more exotic distribution is the
Von Mises distribution, which arises in the directional statistics literature [112,
13].

In Chapter 8, we use Gaussian mixture models to model the locations of actions
and Von Mises mixture models to model the directions of actions.

2.4 Related Work

In this section we discuss literature related to this dissertation. We first discuss
learning value from respectively match sheet data, event stream data, and
tracking data. Next, we discuss learning style from event stream data and
tracking data. The reason why we do not discuss learning style from match
sheet data is because this is essentially impossible due to the extremely limited
granularity of the information in match sheet data.
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Figure 2.5: A one-component and two-component Gaussian Mixture Model
(GMM) are fitted to a synthetic dataset of 100 univariate data points. The
data points were sampled 50/50 from two univariate Gaussian distributions
with parameter sets {µ = 1, σ = 1} and {µ = 4, σ = 1}. The two-component
GMM is clearly a better fit to the data set. Figure copied from “Encyclopedia
of Machine Learning” by Claude Sammut & Geoffrey Webb [150].

2.4.1 Learning Value from Match Sheet Data

In this section, we discuss what can be learned from the information in match
sheet data such as a match’s outcome, the starting line-ups of teams, and the
number of goals scored by each team in a match.

Rating Teams

The most basic piece of information that is always recorded for every match is
its outcome: win, draw, or loss. Using nothing but match outcome, one can
construct ratings for teams that reflect their relative strengths. One way to
do is through the famous ELO rating system (originally introduced by Arpad
Elo in 1978 to rate chess players [56]). Hvattum and Arntzen [87] show how on
the one hand, the ELO rating system is a better fit to predict match outcomes
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than simpler alternatives, but on the other hand, it is also vastly outperformed
by predictive ratings based on bookmakers’ odds.

Another piece of information that is usually recorded in match sheet data is a
match’s final score, i.e., the number of goals scored by each team. Constantinou
and Fenton [39] introduced the pi-ratings for soccer teams, which, in addition
to the outcomes of matches, also use the goal differences in the final scores of
matches. They show how match predictions based on pi-ratings considerably
outperform match predictions based on ELO ratings and also how pi-ratings
can be used in a betting strategy that beats the bookmakers’ odds.

Rating Players

Other pieces of information that are more extensive, but still often recorded
in match sheet data, are player starting line-ups, substitutions, goals scored,
and red cards handed out. This information can be leveraged to assign ratings
based on match outcomes to not just teams, but players as well. For example,
SciSports [152] leverages match sheet data to construct the SciSkill index [153],
which calculates the influence that the player has on the team he plays for.
Another way to rate players is through the plus-minus rating system which
provides an answer to the question: “How does a team perform with a player,
compared to without the player?” [93]. This rating system already existed
in other sports, but Sæbø and Hvattum [149] were the first to introduce the
plus-minus rating system for soccer players in 2015. Kharrat et al. [93] improve
this plus-minus rating system by using not the actual outcome of the match, but
the expected number of goals scored or the expected number of points gained
from the match. However, a small caveat here is that the expected number of
goals is computed not from match sheet data, but from shot characteristics
usually found in event stream data.

Modelling Goal Scores

Rather than come up with rating systems for teams and players, statisticians
have been more interested in ways to directly model and predict the final score
of matches. Maher [111] kicked off this research area by modelling the number
of goals team i scores in a match against team j as a Poisson distribution with
mean αiβj where αi represents the offensive strength of team i and βj represents
the defensive strength of team j. Dixon and Coles [54] improved Maher’s model
by (1) introducing a dependence between the number of goals scored by the
two teams in a match and (2) using a time-decay function to make more recent
match results have stronger effects on teams’ estimated offensive and defensive
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strengths. McHale and Scarf [114] observed that the correlation between the
goals scored by the two teams in a match is not a static value, but depends on
the difference in strength between both teams. More specifically, a larger gap in
relative strength between two teams leads to a more negative correlation (i.e.,
if one team scores more goals, the other team usually scores fewer), but when
both teams are evenly matched in strength, the correlation in scored goals gets
close to zero (i.e., one team scoring more or fewer goals has no effect on the
goals scored by the other team). Boshnakov et al. [19] introduced a new model
called the bivariate Weibull count model and showed how it is a better fit to
predict the number of goals scored by teams in soccer matches than the simpler
Poisson-distribution-based model.

2.4.2 Learning Value from Event Stream Data

We will first discuss learning the value of teams and players based on box
scores, which are simple count-based statistics queried from event stream data.
Next, we introduce the well-known expected-goals (xG) metric to objectify shot
quality. Finally, we show how researchers have extended the concept of expected
goals to quantify passes and other actions.

Box Scores

The most common way to leverage event stream data is to query it for simple
count-based statistics (commonly referred to as box scores) such as distance
covered, number of assists, number of shots, pass percentage, etc. One way
these statistics can be used to value players and teams is to assign a static value
to each type of action and reward players with an action’s associated value
each time they perform an action of that type. This is the approach of the
PlayeRank framework by Pappalardo et al. [127] and the EA SPORTS Player
Performance Indicator by Mchale et al. [115], which was used until the end of
the 2017/18 season by the English Premier League as its official player rating
system [93]. Tiedemann et al. [171] use an operations research technique called
Data Envelopment Analysis [33] to compute players’ efficiency from their playing
time, goals, assists, tackle win ratio, and pass completion ratio. Duch et al. [55]
measure the performance of a player in a match by combining his individual
box scores (e.g. pass success rate, frequency of on-target shots, number of ball
recoveries) with his influence on his team quantified from a passing network.

While box scores provide some insights into the value and style of teams and
players, they largely fail to account for the circumstances under which players
performed their actions. For example, successfully completing a forward pass
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deep into the opponent’s half is both more difficult and more valuable than
performing a backward pass in your own half without any pressure from the
opponent whatsoever. The shortcomings of these simple count-based statistics
have motivated researchers to propose several techniques to analyze actions
in ways that account for the circumstances under which these actions were
performed. These techniques are discussed in the next sections.

Expected Goals

Motivated by the fact that some shots are better than others, the expected-goals
(xG) metric, which has received significant attention, attempts to quantify
the quality of a goal-scoring opportunity [78]. To do so, an expected-goals
model assigns a value between zero and one to each shot which represents the
probability that the shot will result in a goal. The reason why expected-goals
is an interesting tool to measure the offensive output of players is that the
difference between good attackers and bad attackers lies mostly in how many
high-quality scoring chances they create and not in their finishing rate, which
rarely varies much between players [116, 7].

Building an expected-goals model requires addressing three key points:

• What game situations (e.g., penalty, shot from open play) should the
expected-goals model distinguish among?

• What features of a shot are recorded in event stream data and are
informative of the value of that shot?

• What type of learning model will best estimate the probability of a shot
being converted into a goal?

The game situation in which a shot takes place affects the chance that it will
result in a goal. For example, a penalty is more likely to result in a goal than a
shot arising from a counter attack. While some approaches ignore the game
situation [47], it is far more common to distinguish among shots arising from a
small number of distinct game situations and build one expected-goals model for
each one. Distinguishing among different situations better captures the context
of the opportunity, which in turn results in more accurate models. Caley [27]
considers six different shot types: shots from direct free kicks, shots following
a dribble past the keeper, headed shots assisted by crosses, headed shots not
assisted by crosses, non-headed shots assisted by crosses, and non-headed shots
not assisted by crosses. In contrast, IJtsma [88] considers ten different shot
types: open-play shots, open-play headers, penalties, shots from direct free
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kicks, shots following an indirect free kick, shots arising from a corner, shots
arising from a throw-in, shots following a rebound from a save, shots following
a rebound from the woodwork, and shots during counters.

Defining features about a shot that are indicative of its quality is the key step
in building an expected-goals model. Moreover, this step is where domain-
knowledge about soccer comes into play. One category of features captures
characteristics of the shot itself such as the location on the field, the distance
to the goal, and the shot angle. Another category of features is based on
considering the actions that preceded the shot. One such feature is whether the
previous action was a completed take-on. By definition, this entails removing the
on-the-ball defender from the play, which should make the shot easier. Similarly,
whether the previous action was a through-ball also increases the quality of the
shot. A huge number of features have been considered; both Caley’s [27] and
IJtsma’s [88] blog posts provide detailed descriptions of possible features.

Ultimately, an expected-goals model needs to assign a real-valued number
between zero and one to each shot. Typically, this is done by applying a
machine learning model to a large historical data set of shots that for each
shot contains both the observed features as well as its true result (i.e., goal or
no goal). Any machine learning model that returns a probability is suitable,
but typically either a logistic regression model [130] or gradient boosted tree
model [35] is used in practice. A gradient boosted tree model can learn more
fine-grained differences between shots than a logistic regression model [42], but
this comes at the cost of usually not being able to interpret the model [45].
Additionally, Robberechts and Davis [142] showed how more complex learners
also need more training data to produce accurate predictions.

Valuing Passes

The fact that expected-goals models only assign values to shots is problematic
for two reasons. First, shots arise very infrequently, particularly compared to
other types of actions such as passes, crosses or dribbles. Second, focusing on
just the shot ignores the contributions that other players made to creating the
attempt. This has motivated attempts to measure the impact on the scoreline
of actions other than shots.

Since passes constitute the lion’s share of the actions that happen in a match,
passes have been a topic of particular interest in recent years. Most methods
for valuing passes attempt to quantify a player’s involvement in creating goal-
scoring chances. Traditional pass-based metrics usually only reward passes that
result in goals (i.e., assists). However, very few passes can be valued according
to this criteria. Therefore, like for shots, methods for valuing passes typically
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resort to measuring their expected impact on the scoreline based on historical
observations. The traditional approach to address this task is to compute the
difference between the value of possessing the ball in the location before the
pass and the value of possessing the ball in the location after the pass. The
differences between methods arise in how they determine the value of possessing
the ball in a particular location.

At a high level, three approaches to determine the value of a pitch location have
been proposed. The first approach assigns each pitch location an expected-goals
value that is the xG value if a shot would have been attempted from that
location [121]. This approach is particularly appropriate for passes close to
the opponent’s goal. However, passes further away from the goal will all have
expected-goals values close to zero. The second approach is to determine the
proportion of play outs from a pitch location that result into a goal within a
given number of actions or seconds [20, 22, 84]. The challenges are to determine
the optimal number of actions or seconds to look ahead and to measure the
similarity between play outs. For instance, a pass during a slow build up will
likely have a different value than a pass during a fast counter attack. The
third approach is to distribute the reward of a possession sequence (e.g., a goal)
starting in a given pitch location to its constituent passes [26]. The challenge is
to decide on the optimal weighting scheme to distribute the credit across all
the sequence’s passes. Typically, passes at the end of the possession sequence
receive more credit than passes at the start of the sequence.

Valuing Actions

Naturally, the interest in assessing passes led to the desire to evaluate more
actions. While a number of different approaches have been proposed that
evaluate a large number of actions, at a high-level they all function in the same
way. When the team possesses the ball, each action within that possession is
undertaken with the high-level objective of helping the player’s team, either
by increasing the chance that his team scores or decreasing the chance that
the opposing team scores. The practical result of each (successful) on-the-ball
action such as a pass or dribble is a change in the ball’s location on the pitch.
Intuitively, certain locations on the pitch are more valuable than others as
they more readily lend themselves to generating goal scoring opportunities.
For example, possessing the ball near the sideline close to the midfield line is
generally not as threatening as possessing the ball in the center of the pitch
just outside the opponent’s penalty box. This suggests that the value of an
action can be derived by simply taking the difference between the value of the
ball’s new location (i.e., where the ball ends up as a result of the action) and
the ball’s original location. The value of a location can be thought of as the
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probability of a team scoring during its current possession given the location
where the ball is currently possessed.

Metrics such as Valuing Actions by Estimating Probabilities (VAEP) [44]
(Chapter 5), xG Added [110], Expected Threat (xT) [159], Attacking
Contributions [186], Goals Added (g+) [100], Goal Impact Metric (GIM) [106]
all exploit this type of reasoning. The differences arise in the technical modeling
choices made to value the different actions. The first approach, introduced by
Sarah Rudd in 2011 [147], was to view the possession as a Markov model. This
involves discretizing the pitch into zones. Moreover, the model also assumes that
previous actions will have no effect on how the rest of the possession will play
out. That is, it does not differentiate between receiving the ball in the center of
the pitch just outside the penalty area via a long through ball versus receiving
the ball in the exact same location via a short, lateral pass. Another approach
involves training a machine learning model to predict the probability that the
team possessing the ball after an action will score in the near future (e.g., the
next five to ten actions). This enables reasoning about the characteristics of
past actions.

Once we have a way to assign values to individual actions, the most
straightforward way to use them is to aggregate them into player ratings
and team ratings. However, these action values can also serve as building blocks
for other interesting applications such as investigating how players perform
under mental pressure [21] and measuring the mutual chemistry between two
players [23].

2.4.3 Learning Value from Tracking Data

Similarly to learning value from event stream data, researchers have first explored
tracking-data based expected goals models. Then they moved on to metrics
that value passes and even more general approaches that assign a value to any
moment in a match. The latter approaches are often referred to as Expected
Possession Value (EPV) models and can be used to produce stock tickers that
visualize the evolution of the estimated danger over a window in a match.

Expected Goals

Tracking data can be used to build better expected-goals models, as tracking
data contains crucial context that is missing from event stream data such as the
positions of all the players. For example, Lucey et al. [108] built an expected
goals model that, in addition to basic features such as the location of a shot
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and the game phase in which it occurred (e.g., corner, free-kick, open-phase),
also leverages features computed from the ten-second window preceding the
shot such as defender proximity, interaction of surrounding players, and speed
of play.

Valuing Passes

Similar to how tracking data can be used to value shots, it can also be used to
value passes. Power et al. [137] estimate the risk and reward of passes using
additional contextual features from tracking data such as the speed of relevant
players (e.g., the pass-giver, the intended receiver, the nearest defender) and
the angle and distance of the nearest defender towards the passing line. These
features were initially proposed by Szczpenanski and McHale [168], but they
had to build proxy features from event stream data as they did not have access
to tracking data in their work. Power et al. [137] define the risk of a pass as the
probability that the pass will not reach its intended receiver and the reward of a
pass as the probability that the pass made will result in a shot within the next
ten seconds. The authors note themselves that a drawback in their approach is
the sparsity of shots.

To combat the sparsity of goals and shots as the intended end result of passes,
other approaches have been explored to value passes using tracking data. Goes
et al. [75] value passes by how much a pass will disrupt the defensive organization
of the opposing team. Chawla et al. [34] had human observers rate a number
of passes as Good, Ok, or Bad and were able to reproduce these ratings with
90% accuracy using a machine learning model. Their machine learning model
leveraged simple geometric properties within tracking data such as the velocity
of players and the ball as well as the Euclidean distances and angles between
them.

Expected Possession Value

Similarly to event stream data, the interest in valuing passes led to the desire to
create even more general metrics. However, as tracking data consists of location
traces over time and contains no inherent definition of an action, researchers
have focused on metrics that can compute a value for any frame, where a frame
is the locations of the players and the ball at a specific moment during a match.

Link et al. [104] introduce the concept of dangerousity, which is the probability
of a goal being scored and can be computed for every point in time at which
a player is in possession of the ball. Dangerousity is computed from four
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components: (1) the goal-scoring danger of the ball’s current zone, (2) the
extent to which a player can implement his tactical intention, (3) the pressure
put on the player currently in possession of the ball by the opponent, and (4)
the probability of successfully maintaining possession of the ball in the near
future.

Spearman [161] constructed a probabilistic physics-based model that computes
the probability that a player not currently in possession of the ball will score.
This probability is called the off-ball scoring opportunity (OBSO) and is
computed only from the instantaneous game state. At the core of the approach
lies a pitch control field model [162] which quantifies the potential regions of
control in the near future and can be used to reward players for creating space
in a scoring location even if the ball is never delivered to them.

Fernández et al. [60] compute the Expected Possession Value (EPV), which
is a value in the [−1, 1] range that can be computed at any moment during a
match and represents the likelihood of a possession ending in a goal for the
attacking team (1) or a goal for the defending team (-1). Their approach is
similar in spirit to the original EPV approach for basketball [32], but differs
in the technical modelling choices made to account for the nuances of soccer
such as looser notions of possession and the ability of passes to happen at any
location on the pitch.

Dick and Brefeld [53] proposed a deep reinforcement learning approach to learn
values of multi-player positionings. The biggest difference to other works is
that the approach of Dick and Brefeld does not require any prior knowledge
of the domain of soccer. Their approach successfully learns meaningful and
interpretable valuations and can be seen as a first step towards computational
tactics.

2.4.4 Learning Style from Event Stream Data

A recurring concept when discussing soccer is the style of play, which is applicable
on both the player and team level. On the player level, this refers to a player’s
behaviour on the pitch. For example, both Messi and Ronaldo are great players,
but each one approaches the game in a different way. On the team level, this
manifests itself in terms of the tactics the team employs. Naturally, a player’s
behaviour is inherently linked to his team’s tactics. There is substantial value in
gaining a better understanding of playing style as this can be leveraged in areas
such as player scouting and match preparation. Simple descriptive statistics
such as pass percentage or shot count are usually insufficient to capture playing
style. Hence, there has been an explosion of interest in applying automated
techniques to try to glean insights into both player and team behaviours.
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Analyzing Player Behavior

Analyzing player behavior essentially boils down to summarizing the player’s
playing style in a way that is both human-interpretable and suitable for data
analysis. Typically, the goal is to construct a fingerprint of a player’s playing
style which captures distinguishing characteristics of a player’s behavior such
as which types of actions a player tends to perform and where or what types
of gameplay patterns he tends to participate in. There are currently two
distinct ways to do this: location-based and interaction-based. Location-based
approaches consider the locations and action type information in an event.
Typically, they then attempt to summarize which locations a player prefers
to occupy on the field and what actions he tends to perform in each of these
areas [44, 82] (Chapters 7 and 8). Interaction-based approaches consider the
players involved in an event. They focus on detecting player interaction patterns
(e.g., a one-two pass where player A passes the ball to player B who immediately
returns the ball to player A) and then for each player count how often they are
involved in various patterns [12, 83, 182].

Analyzing Team Tactics

As interesting as analyzing individual player behavior is, most works tend to
focus on team tactics, which can also add substantial value to the workflow
of the tactical decision maker, i.e., the coach. Analyzing team tactics is in
some ways easier than analyzing player behavior because there is more event
stream data available per team than per player. However, it can also be more
difficult as team tactics are more complex than player behavior. Usually, the
more complex the concept you are trying to infer from your data, the harder it
is on a technical level to infer it successfully.

There are roughly three different ways to analyze team tactics. The first way is to
summarize a team’s playing style in a number of features (usually simple counts
such as event counts or location occurrence counts) and then cluster teams
based on those features [26, 81]. The second way is to extract patterns from the
data using a pattern mining algorithm [50]. Often, the biggest challenge in this
approach is getting the representation of the data right so that the patterns
extracted by the pattern mining algorithm are informative, intuitive and make
sense to the end user. The third way is to attempt to model the complete
behavior of the team in a network-based approach such as a passing network or
a Markov network [37, 132, 182].

An important parameter of all three approaches is what information from
events to consider. There are three main categories of information per event:
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(1) the player(s) involved, (2) the location, and (3) the type of the event.
Some approaches focus only on one of them. For example, Bekkers and
Dabadghao [12] mine patterns that focus exclusively on involved players and
Peña [132] summarizes team’s playing style purely based on event types.

However, the insights that can be gained from a single category of information
is limited. Hence, most approaches combine two categories. Combining these
categories is often technically challenging and the biggest technical contribution
is in the way the approach combines them. Wang et al. [182] and Cintia et
al. [37] analyze both the involved players and the locations of events by applying
a network-based approach to model the transitions between players and zones
on the pitch. Bojinov et al. [18] and Van Haaren et al. [174] attempt to analyze
team tactics using both location and event type. Typically, the locations of
events are discretized by manually dividing the pitch into simple zones.

Van Haaren et al. [175] and our own contributions in Chapter 6 are even more
ambitious and attempt to detect patterns that capture all three categories of
information at the same time. While interesting, the results are so far more
proof-of-concepts than useful in practice, because as mentioned earlier in this
section, the more complex the concept you are trying to infer from your data,
the harder it is technically to infer it successfully.

2.4.5 Learning Style from Tracking Data

In the context of tracking data, playing style on the level of players relates to
how players fit into their team and how they interact with their team mates.
Playing style on the level of teams mostly concerns how teams attempt to gain
control of the pitch. In this section, we discuss identifying player roles in soccer
based on tracking data (which is considered to be mostly a solved problem [16])
and the more recent research efforts on pitch control models.

Player Roles

One characteristic of soccer that makes tracking data hard to analyze is the
fact that players have varied roles within their team and that these roles are
constantly in flux depending on factors such as the time, the score, and where on
the pitch the ball is currently in play [115]. To combat this challenge, Bialkowski
et al. [16] introduced a role-based representation of soccer teams and an approach
to dynamically update each player’s relative role in each frame. The approach
discovers player roles using a minimum entropy data partitioning method. This
role-based representation of teams and players has many interesting applications
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such as detecting and visualizing team formations [183], identifying teams from
anonymized tracking data [15], and illustrating how teams tend to play higher
up the field when playing at home than away [14].

Pitch Control

In a soccer match, teams are constantly fighting for control over the pitch.
Tracking data is an especially good fit to analyze this process as it records
the locations of all players on the field. Castellano et al. [30] analyzed simple
spatial characteristics of a team such as the length, width, and surface of the
bounding box over the locations of the teams’ players. Their main finding was
that stronger teams tend to play more spread out over the field than weaker
teams.

A reoccurring concept in pitch control models is the dominant region of a
player. The dominant region is the region in which that player can arrive earlier
than any other player [169]. The larger the total dominant region of a team’s
players, the more that team can be considered to be in control of the pitch. The
most common way to compute dominant regions is through the use of Voronoi
diagrams [169, 70, 80, 65, 119]. Fonseca et al. [65] found that attackers tend to
have larger dominant regions than defenders.

Recently, Voronoi-based dominant regions have been criticized as not being
realistic [162, 59]; reasons being that Voronoi-based dominant regions produce
hard borders and do not fully take into account important characteristics of
players such as their typical behavior and current velocity. Gudmundsson
and Wolle [80] augmented the underlying motion models of the Voronoi-based
approach with personalized motion models based on players’ historical movement
data. Spearman [162] introduced a new passing model for soccer that is based
on the physical concepts of interception and control time. The model uses a
statistical framework to accurately predict the precise receiver in the majority
of passes using only the game state at the point the ball is kicked. Using his
model, Spearman can quantify the control a team exerts over any arbitrary
region on the pitch. Fernández et al. [59] provide a pitch control model that
fixes the shortcomings of Voronoi-based models by (1) taking into account key
information such as the velocity of players and (2) rather than having hard
borders between dominant regions, introducing the idea of a soft surface of
control where for a given location on the field, nearby players have a certain
level of influence.



Chapter 3

Representing Event Stream
Data

In this chapter, we discuss event stream data and its challenges. We first
describe the raw event stream data provided by three different vendors and the
engineering challenges related to processing it. Next, we introduce two ways
to represent event stream data: SPADL, an event stream data format that
simplifies and unifies data from different vendors, and Atomic-SPADL, a format
that transforms the initiation and completion of some actions into separate
“atomic” events. Finally, we discuss nine challenges inherent to event stream
data that arise when applying Artificial Intelligence techniques.

Some parts in this chapter are based on the following publication [42] and blog
post [48]:

Decroos, T., Bransen, L., Van Haaren, J., and Davis, J. Actions Speak
Louder than Goals: Valuing Player Actions in Soccer. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (New York, NY, USA, 2019), KDD ’19, ACM, pp. 1851–1861

Decroos, T., Robberechts, P., and Davis, J. Introducing Atomic-SPADL:
A New Way to Represent Event Stream Data. DTAI Sports Analyics Lab Blog,
2020. https://dtai.cs.kuleuven.be/sports/blog/introducing-atomic-
spadl-a-new-way-to-represent-event-stream-data
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3.1 Raw Event Stream Data

Event stream data describes all notable events during a soccer game with a focus
on players’ on-the-ball actions. This data is collected by human annotators who
watch video feeds of soccer games through specialized annotation software. Per
event, annotators record attributes such as the timestamp, location, type (e.g.,
pass, dribble, shot), involved player, etc. Depending on the type of the action,
the annotator also collects additional information such as the end location of a
pass or the outcome of a tackle.

In this section, we briefly discuss three popular vendors that supplied the
event stream data used in this dissertation and highlight three key engineering
challenges that occur when processing their event stream data.

3.1.1 Event Stream Data Vendors

Three prominent vendors of event stream data are:

Opta Opta Sports [126] is a British sports analytics company that currently
provides data for 30 sports in 70 countries, with clients ranging from
leagues to broadcasters and betting websites [113, 126]. The company
was founded in 1996, and acquired by Perform Group in 2013. In turn,
it was acquired by Vista Equity Partners and STATS LLC in 2019 [90].
Opta Sports started collecting event stream data in 2006.

Wyscout Wyscout [185] is an Italian sports analytics company that was
founded in 2004 and started collecting event stream data for soccer in
2013 [91, 185]. As of 2020, the company has over 450,000 players, 220,000
games, and 250 competitions in their database. In 2019, they publicly
released event stream data of the 2016 UEFA Euro cup, the 2018 FIFA
world cup, and the 2017/18 season of the first soccer divisions in England,
Spain, Germany, Italy, and France [128].

StatsBomb StatsBomb [165] is a British soccer analytics company that covers
over 40 soccer leagues worldwide and aims to provide the most accurate
and granular data on the market [165]. The company was founded in
2016 and started collecting event stream data for soccer in 2017. In 2018,
they publicly released soccer event stream data of the 2018 FIFA world
cup.1 Since then, they have also publicly released event stream data of
the FA Women’s Super League and all games of Lionel Messi’s career.

1https://github.com/statsbomb/open-data

https://github.com/statsbomb/open-data
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1 {" @ a t t r i b u t e s " : {
2 " i d " : 1673965276 , " even t_ id " : 857 , " type_ id " : 30 ,
3 " p e r i o d_ i d " : 2 , "min " : 93 , " s e c " : 23 ,
4 " p l a y e r_ i d " : 0 , " team_id " : 413 , " outcome " : 1 ,
5 " x " : 0 , " y " : 0 , " a s s i s t " : 0 , " keypa s s " : 0 ,
6 " t imestamp " : "2017−09−24T17 : 0 9 : 4 5 . 0 0 0 " ,
7 "TimeStamp" : { " l o c a l e " : "2017−09−24T17 : 4 8 : 4 5 . 0 0 0Z" ,
8 " utc " : "2017−09−24T17 : 4 8 : 4 5 . 0 0 0Z"} ,
9 " v e r s i o n " : { " l o " : 1577123840 , " h i " : 2222260661}} ,

10 "Q" : [ {" @ a t t r i b u t e s " : { " i d " : 1209383978 ,
11 " q u a l i f i e r _ i d " : 57 ,
12 " v a l u e " : " "}} ,
13 {" @ a t t r i b u t e s " : { " i d " : 1904522716 ,
14 " q u a l i f i e r _ i d " : 209 ,
15 " v a l u e " : " "}} ] }

Figure 3.1: An event provided by Opta Sports

Additionally, StatsBomb has handed out event stream data of the 2017/18
English Premier League at promotional events.

An example of an event in a soccer game recorded by Opta, Wyscout, and
StatsBomb are available in respectively Figures 3.1, 3.2, and 3.3. For efficiency
reasons, all vendors use identifiers to represent entities such as players, teams,
event types, tags, and qualifiers. Analyzing event stream data thus requires
unifying the identifiers in each event with their respective team, player, event
type, tag, or qualifier, which can be a costly operation if done without proper
care and intelligent software engineering.

Wyscout’s event stream data has a simpler structure than the data of the other
two event stream data vendors. No official study has been conducted yet, but
in the experience of the author of this dissertation and some prominent soccer
analytics practitioners, Wyscout’s data tends to be less accurate than that of
their competitors (e.g., wrong event labels, inaccurate locations, large gaps in
event sequences). The upside however is that Wyscout collects data in a wider
variety of leagues (often smaller leagues in South-America and Asia) and also
sells its data at a cheaper price.

While vendors such as Opta and StatsBomb often like to emphasize the many
details and sheer volume of information recorded in their data, one consequence
of this that often goes unspoken is the engineering cost of processing their
detailed event stream data into a workable format.
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1 {" i d " : 190079081 ,
2 " p l a y e r I d " : 14763 , " teamId " : 1631 , "matchId " : 2499773 ,
3 " matchPer iod " : "1H" , " eventSec " : 20 . 65864 ,
4 " eventName " : 1 , " subEventName " : 11 ,
5 " p o s i t i o n s " : [ { " x " : 73 , " y " : 14} , {" x " : 77 , " y " : 26} ] ,
6 " t ag s " : [ { " i d " : 501} , {" i d " : 701} , {" i d " : 1802} ] }

Figure 3.2: An event provided by Wyscout

1 {" i d " : " 17dd9550−1632−49c1−9e71−a2 f 0 4 f a 2 e 14 f " ,
2 " i ndex " : 26 , " p e r i o d " : 1 , " minute " : 0 , " second " : 22 ,
3 " t imestamp " : " 00 : 0 0 : 2 2 . 4 19 " ,
4 " type " : {" i d " : 42 , "name" : " B a l l ␣ Rec e i p t ∗"} ,
5 " p o s s e s s i o n " : 2 , " pos se s s i on_team " : {" i d " : 902 , "name" : " Huesca "} ,
6 " p l a y_pa t t e r n " : { " i d " : 9 , "name" : "From␣Kick ␣Off "} ,
7 " team" : {" i d " : 902 , "name" : " Huesca " } ,
8 " p l a y e r " : {" i d " : 11671 , "name" : " Juan␣Camilo ␣Hernandez ␣ Suarez "} ,
9 " p o s i t i o n " : {" i d " : 22 , "name" : " R ight ␣ Cente r ␣Forward "} ,

10 " l o c a t i o n " : [ 92 . 0 , 78 . 0 ] ,
11 " r e l a t e d_ e v e n t s " : [ " e2e f62b f −6ca4−45ed−a169−7af61eed1031 " ] ,
12 " b a l l _ r e c e i p t " : {" outcome " : {" i d " : 9 , "name" : " I n comp l e t e "}}}

Figure 3.3: An event provided by StatsBomb

3.1.2 Engineering Challenges

When processing event stream data, three key engineering challenges arise:

Challenge 1: Event stream data serves multiple different objectives (e.g.,
reporting information to broadcasters, computing box scores of players).
Hence, the data is not necessarily designed to facilitate analysis. Some
important information is missing (e.g., Wyscout does not record exact
end locations for shots) or irrelevant information is included (e.g., Opta
records weather changes).

Challenge 2: Each vendor of event stream data uses their own unique
terminology and definitions to describe the events that occur during
a game. For example, the action of trying to get past an opposing player
while keeping possession of the ball is denoted as a take-on by Opta
and a dribble by StatsBomb. Hence, software written for event stream
data has to be tailored to a specific vendor and cannot be used without
modifications to analyze data from another vendor.
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Challenge 3: All vendors include optional information snippets that provide
more detailed information on the event that occurred (e.g., whether the
ball was passed through the air or over the ground, whether a goal attempt
was a header or a foot shot). Opta encodes these optional information
snippets as Qualifiers ("Q" in Figure 3.1), Wyscout encodes them as
tags ("tags" in Figure 3.2), and StatsBomb includes them at the top-
level of the event data structure ("possession", "play_pattern", and
"ball_receipt" in Figure 3.3). While sometimes useful, these optional
information snippets cause event stream data to have a dynamic structure
and thus make it extremely difficult to automatically parse the data and
apply automatic analysis techniques.

3.2 SPADL: A Language for Describing Actions

Based on domain knowledge and feedback from soccer experts, we propose
SPADL (Soccer Player Action Description Language) [42] as an attempt to
unify the existing event stream formats into a common vocabulary that enables
subsequent data analysis. SPADL was designed to accurately define and describe
actions on the pitch in a way that is human-interpretable, simple and complete.
The human-interpretability allows reasoning about what happens on the pitch
and verifying whether the values assigned to those actions correspond to soccer
experts’ intuitions. The simplicity reduces the chance of making mistakes when
automatically processing the data. The completeness enables expressing all the
information required to analyze actions in their full context.

To address the challenges posed by the variety of event stream data formats and
to benefit the soccer analytics community, we released a Python package that
can automatically convert the data of different vendors to SPADL.2 The package
currently supports event stream data of Opta, Wyscout, and StatsBomb.

SPADL is a language for describing player actions, as opposed to the formats
by commercial vendors that describe events. The distinction is that actions are
a subset of events that require a player to perform the action. For example,
a passing event is an action, whereas an event signifying the end of the game
is not an action. We represent a game as a sequence of on-the-ball actions
[a1, a2, . . . , am], where m is the total number of actions that happened in the
game. Each action is a tuple of eight attributes:

Time: the time in the game when the action occurred,

StartLocation: the (x, y) location where the action started,
2https://github.com/ML-KULeuven/socceraction

https://github.com/ML-KULeuven/socceraction
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EndLocation: the (x, y) location where the action ended,

Player: the player who performed the action,

Team: the player’s team,

ActionType: the type of the action (e.g., pass, shot, dribble),

BodyPart: the player’s body part used for the action,

Result: the result of the action (e.g., success or fail).

Note that, unlike all other event stream data formats, we always store the
same eight attributes for each action. Excluding optional information snippets
enables us to more easily apply automatic analysis tools.

We distinguish between 21 possible types of actions including, among others,
passes, crossed corners, dribbles, throw-ins, tackles, shots, penalty shots,
clearances, and keeper saves. These action types were, in collaboration with
domain experts, designed to be interpretable and specific enough to accurately
describe what happens on the pitch, yet general enough such that similar actions
have the same type. The list of all possible action types can be found in Table 3.1
and their relatively frequency can be observed in Figure 3.4.

We consider up to four different body parts and up to six possible results. The
possible body parts are foot, head, other, and none. The two most common
results are success or fail, which indicates whether the action had its intended
result or not. For example, a pass reaching a teammate or a tackle recovering
the ball. The four other possible results are offside for passes resulting in an
off-side call, own goal, yellow card, and red card.

3.3 Atomic-SPADL: A Language for Describing
Atomic Actions

When building models to value actions, a heavy point of debate is how to handle
the results of actions. In other words, should our models make a distinction
between a failed and a successful action or not? On the one hand, an action
should be valued on all its properties, and whether or not the action was
successful (e.g., did a pass receive a teammate, was a shot converted into a goal)
plays a crucial role in how useful the action was. That is, if you want to measure
a player’s contribution during a match, successful actions are important. This
is the viewpoint of SPADL and VAEP which will be discussed in Chapter 5.
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Table 3.1: Overview of the 21 action types in SPADL alongside their descriptions.
The Success? column specifies the condition the action needs to fulfil to be
considered successful, while the Special column lists additional possible results.

Action type Description Success? Special result
Pass Normal pass in open play Reaches teammate Offside
Cross Cross into the box Reaches teammate Offside
Throw-in Throw-in Reaches teammate -
Crossed corner Corner crossed into the box Reaches teammate Offside
Short corner Short corner Reaches teammate Offside
Crossed free-kick Free kick crossed into the box Reaches teammate Offside
Short free-kick Short free-kick Reaches team mate Offside
Take on Attempt to dribble past opponent Keeps possession -
Foul Foul Always fail Red or yellow card
Tackle Tackle on the ball Regains possession Red or yellow card
Interception Interception of the ball Always success -
Shot Shot attempt not from penalty or free-kick Goal Own goal
Penalty shot Penalty shot Goal Own goal
Free-kick shot Direct free-kick on goal Goal Own goal
Keeper save Keeper saves a shot on goal Always success -
Keeper claim Keeper catches a cross Does not drop the ball -
Keeper punch Keeper punches the ball clear Always success -
Keeper pick-up Keeper picks up the ball Always success -
Clearance Player clearance Always success -
Bad touch Player makes a bad touch and loses the ball Always fail -
Dribble Player dribbles at least 3 meters with the ball Always success -

On the other hand, including the result of an action intertwines the contribution
of the player who initiated the action (e.g., provided the pass) and the player
who completed it (e.g., received the pass). Perhaps a pass was not successful
because of its recipient’s poor touch or because he was not paying attention.
It would seem unfair to penalize the player who provided the pass in such a
circumstance. Hence, it can be useful to generalize over possible results of an
action to arrive at an action’s “expected value”. This is exactly the purpose
of the expected goals metric which values shots by generalizing over the two
possible results of shots (success and fail) [78].

To accommodate this alternative viewpoint, we introduce Atomic-SPADL,
which removes the result attribute from SPADL and adds a few new action
and event types. In this representation, all actions are “atomic” in the sense
that they are always completed successfully without interruption. Consequently,
while SPADL treats a pass as one action consisting of both the initiation and
completion of the pass, Atomic-SPADL sees giving and receiving a pass as
two separate actions. Because not all passes successfully reach a teammate,
Atomic-SPADL introduces an interception action if the ball was intercepted by
the other team or an out event if the ball went out of play. We similarly divide
shots, freekicks, and corners into two separate actions. Practically, the effect is
that this representation helps to distinguish the contribution of the player who
initiated the action (e.g., gives the pass) and the player who completed it (e.g.,
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Figure 3.4: Frequency of each SPADL action type when converting Wyscout
data to the SPADL format. The converted Wyscout data spanned all games in
the English, Spanish, German, Italian, French, Dutch, and Belgian top divisions
in the 2012/2013 through 2017/2018 seasons. After converting the Wyscout
data to SPADL, each game contained ±1250 actions on average.

receives the pass).

Figure 3.5 and Figure 3.6 illustrate the differences between SPADL and Atomic-
SPADL by plotting the same phase in both formats. The phase considered is
the actions leading up to the only goal in the France vs Belgium match in the
semi-final of the 2018 FIFA World Cup. Both the SPADL and Atomic-SPADL
representations were converted from raw StatsBomb data of this match.

3.4 Analysis Challenges

While converting event stream data to the SPADL or Atomic-SPADL format
addresses some key engineering challenges, there also exist other challenges
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Figure 3.5: The actions leading up to the only goal in the France vs Belgium
match in the semi-final of the 2018 FIFA World Cup encoded in the SPADL
format. The first three actions (pass, dribble, shot) detail France’s first attempt
to score, which they missed. The next two actions detail the subsequent corner
from which they headed the ball in.

Figure 3.6: The same actions as in Figure 3.5 encoded in the Atomic-SPADL
format. Both the pass and the corner kick now have a subsequent receival
action by the player successfully receiving the ball. In addition, the results of
the shots have also been explicitly added to the event stream in the form of out
and goal events. Finally, we removed the distinction between corner_crossed
and corner_short (as encoded in SPADL), as at the exact moment the player
kicks the ball, we have no idea whether the corner will be crossed or taken short.
Hence, these two actions were merged into the simpler corner action.
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that cannot be solved by converting the data to a new format. In this section,
we discuss nine challenges inherent to all forms of soccer event stream data
that arise when analyzing this data with techniques from the field of artificial
intelligence.

1. Actions have both discrete (e.g., type, player, team) and continuous (e.g.,
time, location) attributes. Most artificial intelligence techniques prefer to
work on either discrete or continuous data exclusively and rarely work
well on a mix of both.

2. There is little exact repetition in sequences of game play. That is, the
same players rarely perform the same actions in the same order in the
same locations. This makes counting interesting occurrences difficult, as
the counting method must intelligently generalize over action attributes.

3. It is often necessary to augment the data with domain knowledge such
as the role of a player within their team’s formation, the location of the
goal, and the playing direction of a team on the pitch (i.e., left to right or
right to left). The challenge lies in determining what domain knowledge
to include and how to encode the domain knowledge in such a way that it
can aid the analysis technique.

4. Event stream data is constructed by human annotators and thus imperfect.
While most vendors have rigorous procedures in place to check the quality
of the data they produce, the human element in the data collection
procedure will inevitably lead to both missing data (i.e., unexplainable
gaps in sequences of events) and incorrect data such as faulty event names
and wrong coordinates.

5. The forced discreteness of event stream data is sometimes unable to
capture the nuances and fluidity of the game. For example, whether a
specific action was an intended shot or an accidental cross or whether
a certain player was involved in an action or not can be up for debate.
There is not always a clear yes or no answer to these questions, yet human
annotators are forced to pick an answer and annotate the data this way.

6. Event stream data mostly focuses on on-the-ball actions (e.g., passes,
shots). However, over the course of a game, many important off-the-ball
actions occur such as strikers sprinting towards a position to open up
space for a teammate, midfielders putting pressure on opposing players
to deny their further advancement, and defenders carefully positioning
themselves to obstruct their opponent’s line of sight to the goal.

7. Most events within event stream data only detail the location of the one
player currently in possession of the ball. This means that even the most
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advanced analysis techniques are inherently limited in how well they can
analyze the data because they are always missing often crucial context,
i.e., the locations of the other 21 players on the field. For example, how
can we evaluate the decision making behind a pass if we do not know
what teammates were available and where they were positioned at that
moment in the match?

8. Many popular AI techniques often required fixed-size feature vectors and
cannot natively handle a sequence or set of data points of varying size.

9. There is often no ground truth present in the data. Both value and style
are subjective concepts for which there is no ground truth in the data to
compare the learned results against (i.e., there is no test or validation set
like in more traditional AI/ML tasks).





Chapter 4

STARSS: A Spatio-Temporal
Action Rating System for
Soccer

In this chapter, we present STARSS (Spatio-Temporal Action Rating System
for Soccer), which leverages historical match data to assign a rating to the
actions (e.g., a pass or a shot) performed by the players in a match. For a given
match, the presented approach proceeds in three steps. First, the approach
splits the match into phases, which are uninterrupted sequences of actions where
one team is in possession of the ball. Second, it assigns a phase rating to each
phase based on historical match data. The higher the assigned rating, the more
likely that the phase will end in a goal. Hence, our approach focuses on the
actions that contribute to the offensive output of the team. Third, the approach
distributes the phase rating across the individual actions that constitute the
phase.

We use STARSS to rate players and teams in individual matches as well as
throughout the course of a season. We present the top-15 players for the
2015/2016 season in the English Premier League, the German Bundesliga, and
the Spanish La Liga. We find that wingers and attacking midfielders tend to
contribute more to a team’s STARSS rating than strikers, that five of the top-15
players in the German Bundesliga play for FC Bayern Munich, and that Lionel
Messi is the best player in these three leagues.

45
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The content of this chapter is based on the following publication [51]:

Decroos, T., Van Haaren, J., Dzyuba, V., and Davis, J. STARSS: A
Spatio-Temporal Action Rating System for Soccer. In Machine Learning and
Data Mining for Sports Analytics ECML/PKDD 2017 workshop (2017)

4.1 Methodology

STARSS is an approach for automatically rating the actions performed by soccer
players. Unlike traditional approaches [115, 171, 55], which simply compute
a weighted sum of the frequencies of a hand-picked set of action types, our
approach accounts for the spatio-temporal context in which the actions were
performed. More specifically, STARSS leverages the outcomes of similar actions
that were performed in similar circumstances in the past to assess the value of
a particular action to the team.

To rate the player actions in a given match, our approach performs the following
three steps. First, it splits the match into phases of related actions. Second, it
assigns phase ratings to the resulting phases based on historical match data.
Third, it assigns action ratings to the individual actions that constitute the
phases.

4.1.1 Splitting Matches into Phases

We represent a match as a sequence of n player actions [a1, . . . , an]. We start
a new phase each time possession switches from one team to the other or too
much time (i.e., 10 seconds) has passed between consecutive actions (Figure
4.1). For example, when the ball goes out of play for a throw-in or corner kick,
when a goal is scored, or when a free kick is awarded.

This way, a match is split into a number of phases, where each phase P is a
subsequence of consecutive actions [aa, . . . , ab].

4.1.2 Valuing Phases

We assign a rating to a given phase P in two steps as follows. In the first step,
we search the k most-similar phases in terms of their spatial location on the
pitch in historical match data. This historical match data bas been split up
into a large number of phases using the procedure of the previous section. To
measure the similarity between two phases P and P ′, we employ dynamic time
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Figure 4.1: A sequence of actions being split in coherent phases.

warping (DTW) [123] as this distance function does not require two sequences
to have the same length and is insensitive to minor mismatches. Specifically,
we compute the distance d(·, ·) between two phases P and P ′ as follows:

d(P, P ′) =
√
DTW (Px, P ′x)2 +DTW (Py, P ′y)2 (4.1)

where Px (P ′x) and Py (P ′y) denote the x and y coordinates of the actions that
constitute phase P (P ′). The core idea behind this approach is to reward teams
and players for phases that get the ball into dangerous places, even if the phases
do not lead to a shot. Furthermore, we are less interested in which action is
used to get the ball into the location, as we do not want to favor one style
of play over another. Most existing approaches to rate phases in soccer (e.g.,
[88, 27, 108]) only take phases that lead to a goal or a shot into account.

As exhaustive search to find nearest neighbors is computationally expensive, we
use a vantage-point (VP) tree [187], which achieves efficient ordering using an
application-specific distance metric. This permits look up in logarithmic time
(in the size of the training data) for identifying the nearest neighbors. There is
a small risk that we will miss a nearest neighbor with the VP as it technically
requires a distance metric and DTW violates the triangle inequality. However,
DTW almost always satisfies the triangle inequality on real-world data [180],
so we prefer the run time speed up over the small risk of missing a nearest
neighbor.
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In the second step, we compute the phase rating as the proportion of similar
phases that end in a goal:

phase_rating(P ) = 1
k

∑
P ′∈NNk(P )

1goal(P ′) (4.2)

where 1goal(P ) is an indicator function that is 1 if P ends in a goal and 0 if
it does not and NNk(P ) is the set of the k most similar phases to P (i.e., the
Nearest Neighbors) according to the distance function d(·, ·) in Equation 4.1.
For example, if we want to rate a phase P using k = 100 similar phases and 13
out of the 100 most similar phases end in a goal, then the rating of P amounts
to 0.13.

4.1.3 Distributing Phase Values over Actions

Assume we are given a phase P = [aa, . . . , ab] with aa the first action of the
phase and ab the last action of the phase. We then assign a rating to each action
ai in P in two steps. We first compute an action weight wi that indicates the
relevance of the action ai to the phase P , and then compute the action rating
by multiplying the rating for the phase P with the normalized action weight w′i.

We use an exponential-decay-based approach to compute the action weights.
We consider actions that happen at the end of a phase more important than
actions that happen at the start of a phase. Hence, we assign low weights to
actions that happen at the start and high weights to actions that happen at
the end. Intuitively, this makes sense as the last few actions in a phase have
the highest influence on its outcome. We compute the action weights in reverse
order, starting with the last action ab and working our way down to the first
action aa, using the following formula:

wi =
{

1 if i = b,

(1− λ) · wi+1 if a ≤ i < b
(4.3)

where λ is a user-specified parameter.

We normalize the weights such that they sum to one, which means that the
phase rating is completely distributed across the individual actions.

w′i = wi∑b
j=a wj

(4.4)

Finally, the rating for an action ai ∈ P is computed by multiplying the phase
rating with the normalized action weight.

action_rating(ai) = w′i · phase_rating(P ) (4.5)
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4.2 Experiments

The dataset in our experiments consists of event stream data for the English
Premier League, German Bundesliga, and Spanish La Liga for the 2012/2013
through 2015/2016 seasons.1 Our dataset comprises 4253 matches, 7,569,802
game events, 110,290 shots, and 11,842 goals.

We use STARSS to rate players in individual matches as well as throughout
the course of an entire season as follows. For a given player, we first sum the
ratings for the actions performed by the player during a match or season, then
divide this sum by the total number of minutes that the player played, and
finally multiply by 90 to obtain a rating normalized per 90 minutes. We refer
to this metric as starss/90. Similarly, we also rate teams in individual matches
and over the course of a season.

We respect the chronological order of the matches when rating player actions.
To rate a player or team in a particular match, we only leverage matches from
the same league that had already been played at the time of that match to
discover similar phases. For example, to rate the Leicester City players in their
1-3 win over Manchester City on 6 February 2015, we only consider the Premier
League matches in our dataset that were played before that date.

This section presents case studies that illustrate the utility of the presented
STARSS approach. Concretely, we address the following two questions:

1. Can STARSS identify the top-performing players in a league?

2. Can STARSS identify the top-performing players in a match?

For each of the case studies, we set the parameters k = 100 and λ for computing
the action weights to 0.25 based on domain knowledge and an empirical analysis
of the available data.

4.2.1 Identifying the Top Players in a Season

We compute the player ratings for all players that played at least 600 minutes
in the 2015/2016 season of the English Premier League, German Bundesliga,

1Note that in this chapter we do not use the SPADL format of Chapter 3, but instead use
raw event stream data of a prominent vendor. The reason for this is that the contributions in
this chapter chronologically precede the creation of the SPADL format.
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and Spanish La Liga. We present the top-15 players for each league in tables
4.1, 4.2, and 4.3, respectively. Note that these rankings differ from simply
ranking players based on a combination of goals and assists per 90 minutes,
and hence they provide insight beyond using these traditional metrics. Alexis
Sánchez was a key player for championship contenders Arsenal and tops the
Premier League ranking. Zlatko Junuzović, whose assists were instrumental for
Werder Bremen in their battle against relegation, is the top-ranked player in
the Bundesliga. Lionel Messi, who helped Barcelona claim the league title, tops
the La Liga ranking. Unsurprisingly, the five-time FIFA Ballon d’Or winner is
also the top-ranked player across the three leagues. Unlike the Premier League
and Bundesliga, the La Liga ranking exhibits a clear gap between Lionel Messi
and the rest, indicating that the Argentine forward is a class apart as was also
suggested by earlier work [122].

The Premier League ranking suggests that Arsenal’s offensive compartment
excelled in the 2015/2016 season. The Gunners, who eventually finished second,
have four players in the top 15 with Santi Cazorla, Mesut Özil, and Olivier
Giroud alongside top-ranked Alexis Sánchez. In contrast, surprise champions
Leicester City have not a single player in the top 15, despite the fact that Riyad
Mahrez won the Player’s Player of the Year award and Jamie Vardy won the
Premier League Player of the Season Award. These players were ranked first and
second in the league according to summing total goals and assists. Traditional
metrics like expected-goals indicated that Leicester were hugely over-performing
last season, that is, the results were much better than the underlying numbers.
Additionally, Leicester were also awarded a remarkably high number of penalties
(13 in total, while the league average was 4.5 league average).

The Bundesliga ranking clearly shows FC Bayern Munich’s superiority in
the 2015/2016 season. Although Werder Bremen’s free-kick specialist Zlatko
Junuzović tops the ranking, the eventual champions have five players in the
top 15. The La Liga ranking sees most of the usual suspects near the top
of the ranking with Lionel Messi (Barcelona), Neymar (Barcelona), Cristiano
Ronaldo (Real Madrid), and Gareth Bale (Real Madrid) occupying the first
four positions.

These rankings also indicate several highly-ranked players who made moves to
larger clubs following the season. These include Ilkay Gundogan and Nolito,
who both transferred to Manchester City, and Henrikh Mkhitaryan, who moved
to Manchester United.



EXPERIMENTS 51

Table 4.1: Top-15 players in the 2015/2016 English Premier League season.
starss/90 refers to our STARSS player ratings, while g/90 and a/90 refer to
respectively goals and assists per 90 minutes.

Rank Team Player starss/90 g/90 a/90
1 Arsenal Alexis Sanchez 0.289 0.478 0.147
2 West Ham Dimitri Payet 0.279 0.315 0.420
3 West Ham Mauro Zarate 0.262 0.342 0.000
4 Chelsea Willian 0.249 0.164 0.196
5 Liverpool Philippe Coutinho 0.244 0.359 0.225
6 Arsenal Santi Cazorla 0.240 0.000 0.209
7 Arsenal Mesut Ozil 0.240 0.177 0.561
8 Sunderland Wahbi Khazri 0.240 0.167 0.084
9 Aston Villa Rudy Gestede 0.237 0.272 0.109
10 Manchester City Kevin De Bruyne 0.233 0.315 0.404
11 Tottenham Christian Eriksen 0.231 0.184 0.398
12 Arsenal Olivier Giroud 0.231 0.594 0.223
13 Liverpool Christian Benteke 0.229 0.474 0.178
14 Tottenham Erik Lamela 0.228 0.189 0.340
15 Manchester City David Silva 0.222 0.100 0.550

Table 4.2: Top-15 players in the 2015/2016 German Bundesliga season. starss/90
refers to our STARSS player ratings, while g/90 and a/90 refer to respectively
goals and assists per 90 minutes.

Rank Player Team starss/90 g/90 a/90
1 SV Werder Bremen Zlatko Junuzovic 0.271 0.153 0.383
2 Borussia Dortmund Ilkay Gundogan 0.264 0.045 0.135
3 VfB Stuttgart Alexandru Maxim 0.263 0.086 0.430
4 FC Augsburg Tobias Werner 0.258 0.000 0.129
5 SV Darmstadt 98 Sandro Wagner 0.257 0.436 0.145
6 Borussia Dortmund Henrikh Mkhitaryan 0.257 0.384 0.524
7 FC Bayern Munchen Thiago Alcantara 0.255 0.110 0.165
8 FC Bayern Munchen Franck Ribery 0.253 0.264 0.396
9 FC Bayern Munchen Robert Lewandowski 0.252 0.950 0.068
10 FC Bayern Munchen Thomas Muller 0.250 0.576 0.192
11 FC Bayern Munchen Arjen Robben 0.248 0.245 0.082
12 FC Ingolstadt 04 Dario Lezcano 0.247 0.145 0.072
13 Bayer 04 Leverkusen Hakan Calhanoglu 0.246 0.080 0.199
14 VfB Stuttgart Daniel Didavi 0.245 0.407 0.111
15 VfB Stuttgart Daniel Ginczek 0.244 0.286 0.143
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Table 4.3: Top-15 players in the 2015/2016 Spanish La Liga season. starss/90
refers to our STARSS player ratings, while g/90 and a/90 refer to respectively
goals and assists per 90 minutes.

Rank Team Player starss/90 g/90 a/90
1 Barcelona Lionel Messi 0.387 0.759 0.528
2 Barcelona Neymar 0.339 0.559 0.353
3 Real Madrid Cristiano Ronaldo 0.320 0.820 0.311
4 Real Madrid Gareth Bale 0.310 0.984 0.518
5 Malaga Duda 0.304 0.085 0.085
6 Celta de Vigo Nolito 0.297 0.400 0.255
7 Real Madrid James Rodriguez 0.286 0.416 0.475
8 Sevilla Yevhen Konoplyanka 0.273 0.167 0.223
9 Sevilla Ever Banega 0.266 0.209 0.104
10 Real Madrid Isco 0.251 0.148 0.345
11 Barcelona Luis Suarez 0.247 1.057 0.457
12 Atletico de Madrid Angel Correa 0.247 0.475 0.380
13 Real Madrid Jese 0.243 0.544 0.653
14 Celta de Vigo Orellana 0.238 0.185 0.216
15 Eibar Saul Berjon 0.238 0.064 0.257

4.2.2 Identifying the Top Players in a Match

To identify the top players in a match, we perform three steps. First, we
compute the rating for each player in each match in the 2015/2016 season of
the English Premier League, German Bundesliga, and Spanish La Liga. Second,
we compute the team rating for each team in each match by summing the
individual player ratings. Third, we compute each player’s share of the team
rating.

Figure 4.2 shows the shares of the player ratings in the team ratings for El
Clásico, a match between fierce rivals FC Barcelona and Real Madrid in La
Liga, on 2 April 2016. Unsurprisingly, Lionel Messi, Luis Suarez, and Neymar
occupy the first three spots for FC Barcelona, while Gareth Bale, Cristiano
Ronaldo, and Karim Benzema occupy the first three spots for Real Madrid.

4.3 Related Work

This section discusses related work in soccer as well as other sports.
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Figure 4.2: The shares of the player ratings in the team ratings for El Clásico,
a match between fierce rivals Real Madrid and FC Barcelona in La Liga, on 2
April 2016. FC Barcelona is shown at the left, while Real Madrid is shown at
the right.

STARSS is related to the work on expected-goals models, which have been a hot
topic in the soccer-analytics community for the past few years. Expected-goals
models aim to objectively quantify the quality of goal attempts and several
different models have been proposed in recent years [89, 27, 108]. However,
our work differs from these existing approaches in two crucial aspects. First,
our approach is not restricted to shots and rates players based on all actions
contributing to the team’s offensive output. Second, our approach explicitly
takes the spatio-temporal context of the actions into account, as suggested by
Altman et al. [6].

There are a number of websites such as WhoScored.com and Squawka.com that
provide player ratings for soccer on a match-by-match basis. These websites have
hand-crafted formulas that simply compute a weighted sum of frequencies for a
hand-picked set of actions (e.g., shots, tackles, etc.). The weights associated with
each action are set by hand according to domain knowledge. The importance
of some of the defensive statistics such as the number of tackles is debatable. A
high percentage of successful tackles is often considered a good thing but can
also be the result of poor positioning. Our method differs from these approaches
in that we avoid hand-crafting and use an automated data-driven approach to
assign rankings. Furthermore, we consider the spatio-temporal context in which
the actions were performed which the hand-crafted models ignore.
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While virtually unexplored to date for soccer, the task of objectively quantifying
player actions has been investigated for other sports. Cervone et al. [32] propose
the Expected Possession Value (EPV) model for basketball, which estimates
the number of points a team is expected to score during a possession. uses
a multiresolution semi-Markov stochastic model that defines a probability
distribution over what the ballhandler is likely to do next, given the spatial
configuration of the players on the court. Hence, this approach requires optical
tracking data for all players. Routley and Schulte [146] introduce a conceptually
similar model for ice hockey. They note that valuing actions can be posed within
a reinforcement learning framework, which is challenging as in sports there is
only access to a fixed data set, not a dynamic environment in which we can
run new trials. Their approach considered a discrete state space and ignored
locational information, which is highly important in soccer. Pettigrew [133]
assesses the offensive productivity of hockey players based on the context in
which they score goals. Schuckers and Curro [151] introduce the Total Hockey
Rating (THoR) which goes beyond shots and goals to rate hockey players by
taking all game events into account.

4.4 Conclusions

This chapter introduced STARSS, which is an approach for automatically rating
the actions performed by soccer players. Viewing a soccer match as a sequence
of actions performed by players, the approach proceeds in three steps to rate
these actions. First, it splits the match into phases of related actions. Second, it
assigns a rating to each phase, indicating how likely it is that the phase will end
in a goal. Third, it distributes the assigned rating over the individual actions
that constitute the phase.

Unlike more simple approaches for rating soccer players, our approach goes
beyond shots and goals. It considers all the actions that contribute to a team’s
offensive output and accounts for the spatio-temporal context in which these
actions were performed. Several case studies show that our approach is able to
identify top-performing players in individual matches as well as throughout the
course of an entire season.



Chapter 5

VAEP: A Framework for
Valuing Actions

This chapter proposes VAEP, a novel data-driven framework for valuing actions
in a soccer game. Unlike most existing work, the framework can value all types
of actions (e.g., passes, crosses, dribbles, take-ons, and shots), considers not
only the offensive, but also the defensive value of actions, and accounts for
the circumstances under which each of these actions happened as well as their
possible longer-term effects. Intuitively, an action value reflects the action’s
expected influence on the scoreline. That is, an action valued at +0.05 is
expected to contribute 0.05 goals in favor of the team performing the action,
whereas an action valued at -0.05 is expected to yield 0.05 goals for their
opponent.

In summary, this chapter makes the following four contributions:

1. a framework for valuing player actions and rating players based on their
impact on the game;

2. a model for predicting short-term scoring and conceding probabilities at
any moment in a game;

3. a number of use cases showcasing our most interesting results and insights;

4. a Python package1 that (a) converts existing event stream data to our
language, (b) implements our framework, and (c) constructs a model that
estimates scoring and conceding probabilities.

1https://github.com/ML-KULeuven/socceraction
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This chapter is based on the following publications:

Decroos, T., Bransen, L., Van Haaren, J., and Davis, J. Actions Speak
Louder than Goals: Valuing Player Actions in Soccer. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (New York, NY, USA, 2019), KDD ’19, ACM, pp. 1851–1861

Decroos, T., and Davis, J. Interpretable Prediction of Goals in Soccer. In
AAAI 2020 Workshop on Artificial Intelligence in Team Sports (2020)

Decroos, T., Bransen, L., Van Haaren, J., and Davis, J. VAEP:
An Objective Approach to Valuing On-the-Ball Actions in Soccer (Extended
Abstract). In Proceedings of the 29th International Joint Conference on Artificial
Intelligence (2020), AAAI Press

5.1 VAEP: A Framework for Valuing Actions

This section introduces the VAEP (ValuingActions by EstimatingProbabilities)
framework for valuing actions performed by soccer players. First, we show how
to use scoring and conceding probabilities to compute objective action values.
Next, we show how to convert a set of action values to a player rating that
represents the player’s total offensive and defensive contribution to their team.

5.1.1 Converting Scoring and Conceding Probabilities to
Action Values

Broadly speaking, most actions in a soccer game are performed with the intention
of (1) increasing the chance of scoring a goal, or (2) decreasing the chance of
conceding a goal. Given that the influence of most actions is temporally limited,
one way to assess an action’s effect is by calculating how much it alters the
chances of both scoring and conceding a goal in the near future. We treat the
effect of an action on scoring and conceding separately as these effects may be
asymmetric in nature and context dependent.

We view a soccer game as a sequence of on-the-ball actions [a1, . . . , an]. The
effect of every on-the-ball action is that it alters the game state. That is, an
action ai moves the game from game state Si−1 to game state Si. Each game
state Si can be represented by all the actions [a1, . . . , ai] that have happened
up to that point in the game.
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Suppose that for each game state Si, we have access to the probabilities of
scoring and conceding in the near future for the home team h and the visiting
team v. Let Pscores(Si, h) and Pconcedes(Si, h) denote the probability of the
home team h respectively scoring and conceding in the near future. Similarly,
let Pscores(Si, v) and Pconcedes(Si, v) denote the probability of the visiting team
v respectively scoring and conceding in the near future.

Valuing an action for a team then requires assessing the change in probability
for both scoring and conceding as a result of action ai moving the game from
state Si−1 to state Si. The change in probability for team x scoring, where x
can be either the home team h or the visiting team v, can be computed as:

∆Pscores(ai, x) = Pscores(Si, x)− Pscores(Si−1, x). (5.1)

This change will be positive if the action increased the probability that team x
will score a goal. We call this change ∆Pscores(ai, x) the offensive value of an
action ai for team x. Similarly, the change in probability for team x conceding
a goal can be computed as:

∆Pconcedes(ai, x) = Pconcedes(Si, x)− Pconcedes(Si−1, x). (5.2)

This change will be positive if the action increased the probability that team
x will concede a goal. However, all actions should always aim to decrease
the probability of conceding. That is why we call the negation of this change
−∆Pconcedes(ai, x) the defensive value of an action ai for team x.

We combine Equations 5.1 and 5.2 to derive an action’s total VAEP value.
Definition 1 (VAEP Value). The total VAEP value of an action is the sum
of that action’s offensive value and defensive value.

V (ai, x) = ∆Pscores(ai, x) + (−∆Pconcedes(ai, x)) (5.3)

Given that we are usually interested in the value of an action for the team of
the player performing the action, we use V (ai) to denote V (ai, xi), where xi is
the team of the player performing action ai.

The VAEP framework provides a simple approach to valuing actions that is
independent of the representation used to describe the actions. The framework’s
strength is that it transforms the subjective task of valuing an action into the
objective task of predicting the likelihood of a future event in a natural way.

5.1.2 Converting Action Values to Player Ratings

Our method assigns a value to each individual action. We can aggregate the
individual action values into a player rating for multiple time granularities as
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well as along several different dimensions. A player rating could be derived for
any given time frame, where the most natural ones would include a time window
within a game, a full game, or a full season. Regardless of the time frame, we
compute a player rating in the same manner. Since spending more time on the
pitch offers more opportunities to contribute, we compute the player ratings
per 90 minutes of game time. Given a time frame T and player p, we compute
the player’s VAEP rating as

rating(p) = 90
m

∑
ai∈AT

p

V (ai), (5.4)

where AT
p is the set of actions the player p performed during time frame T ,

V (ai) is computed according to Definition 1, and m is the number of minutes
the player played during T . This player rating captures the average net goal
difference contributed to the player’s team per 90 minutes.

Additionally, instead of summing over all actions, a player’s rating can be
computed per action type. This allows constructing a player profile, which may
enable identifying different playing styles. In general, player ratings can be
computed along different dimensions, depending on the use case.

5.2 Estimating Scoring and Conceding Probabili-
ties

This section describes our method for estimating the scoring and conceding
probabilities required by the VAEP framework. Let goal(h) denote a goal scored
by the home team h, and goal(v) denote a goal scored by the visiting team v.
Our task can then be defined as:

Given: game state Si = [a1, . . . , ai];

Estimate: the probability of scoring and conceding in the near future for the
home team h and the visiting team v, which we denote by:

Pscores(Si, h) = P (goal(h) ∈ F k
i |Si)

Pconcedes(Si, h) = P (goal(v) ∈ F k
i |Si)

Pscores(Si, v) = P (goal(v) ∈ F k
i |Si)

Pconcedes(Si, v) = P (goal(h) ∈ F k
i |Si)
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where F k
i = [ai+1, . . . , ai+k] is the sequence of k actions that follow action

ai, and k is a user-defined parameter.

Because Pconceding(Si, h) = Pscoring(Si, v) and Pscoring(Si, h) = Pconceding(Si, v),
we only have to estimate the probability of scoring and conceding for one team,
and we get the probabilities of the other team for free. We leverage this fact
by only estimating the scoring and conceding probabilities for the team that
possessed the ball in game state Si. Hence, our task simplifies to two separate
binary probabilistic classification problems with identical inputs but different
labels.

Given: game state Si, where xi is the team in possession of the ball during Si;

Estimate: (1) Pscores(Si, xi), and (2) Pconcedes(Si, xi).

Applying a standard machine learning algorithm requires converting the sequence
of actions [a1, a2, . . . , am] describing an entire game into examples in the feature-
vector format. Thus, one training example is constructed for each game state
Si. In the remainder of this section, we describe (1) the features of each game
state, (2) the label we assign to each game state, (3) probabilistic classifiers
to estimate scoring and conceding probabilities, and (4) evaluation metrics to
evaluate the performance of the learned models.

5.2.1 Features

For each example, instead of defining features based on the entire current
game state Si = [a1, . . . , ai], we only consider the most recent three actions
[ai−2, ai−1, ai]. Approximating the game state in this manner offers several
advantages. First, most machine learning techniques require examples to be
described by a fixed number of features. Converting game states with varying
numbers of actions, and hence different amounts of information, into this format
would necessarily result in a loss of information. Second, considering a small
window focuses attention on the most relevant aspects of the current context.
The number of actions to consider is a parameter of the approach, and three
actions was empirically found to work well. From these three actions, we
define features that impact the probability of a goal being scored in the near
future. Using the SPADL representation for actions introduced in Chapter 3,
we consider three categories of features.

SPADL features. For each of the three actions, we define a set of categorical
and real-valued features based on information explicitly included in the
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SPADL representation. We consider categorical features for an action’s
type and result, and the body part used by the player performing the
action. Similarly, we consider real-valued features for the (x, y)-coordinates
of the action’s start and end locations, and the time elapsed since the
start of the game.

Complex features. The complex features combine information within an
action and across consecutive actions. Within each action, these features
include (1) the distance and angle to the goal for both the action’s start
and end locations, and (2) the distance covered during the action in both
the x and y directions. Between two consecutive actions, we compute the
distance and elapsed time between them and whether the ball changed
possession. These features provide some intuition about the current speed
of play.

Game context features. The game context features are (1) the number of
goals scored in the game by the team possessing the ball after action
ai, (2) the number of goals scored in the game by the defending team
after action ai, and (3) the goal difference after action ai. We include
these features because teams often adapt their playing style to the current
scoreline (e.g., a team that is 1-0 ahead will play more defensively than a
team that is 0-1 behind).

5.2.2 Labels

For the first classification problem of estimating Pscores(Si, xi), we assign a
game state Si a positive label (= 1) if the team possessing the ball after action
ai scored a goal in the subsequent k actions, and a negative label (= 0) in
all other cases. Similarly, for the second classification problem of estimating
Pconcedes(Si, xi), we assign a game state Si a positive label (= 1) if the team
possessing the ball after action ai conceded a goal in the subsequent k actions,
and a negative label (= 0) in all other cases.

In both binary classification problems, k is a user-defined parameter that
represents how far ahead in the future we look to determine the effect of an
action. In this chapter, we chose k = 10 based on domain knowledge and
preliminary experiments.

5.2.3 Probabilistic Classifiers

To estimate scoring probabilities, we need a probabilistic classifier that can
predict the labels from the features. We discuss three models: logistic
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regression [129], XGBoost [35], and the lesser known generalized additive models
(GAMs) [85].

Logistic Regression Logistic regression is a statistical model that uses a
logistic function to model a binary target variable that depends on the
input features [129]. Given an input feature vector x = [x1, x2, . . . , xm]
and a target variable y, logistic regression will learn the following function:

g(E[y]) = α0 + α1x1 + α2x2 + · · ·+ αmxm = α0 +
m∑
i

αixi

where g is the logit link function and the weights αi are learned from the
training data. This formula illustrates how logistic regression is a linear
model. It is also interpretable, as the sign of αi shows whether there is a
positive or negative correlation between feature xi and the target variable
y while the magnitude of αi hints how big its impact is.

XGBoost XGBoost is a popular gradient boosting decision trees model that
solves many data science problems in a fast and accurate way [35]. Due
to its excellent performance, it has become the de facto standard model of
choice for many data science practitioners when classifying tabular data.
One of the reasons XGBoost works so well out of the box is that by using
decision trees and the boosting mechanism, it can learn complex non-
linear decision boundaries. The downside is that these complex non-linear
decision boundaries are often too complex for humans to grasp and thus
XGBoost is in practice a black box model.

Generalized Additive Model Generalized additive models (GAMs) are
statistical models that model the target variable as a sum of univariate
functions [85]. Standard GAMs have the form

g(E[y]) = f1(x1) + f2(x2) + · · ·+ fm(xm) =
m∑
i

fi(xi)

where g is the logit link function and the functions fi are learned from
the training data. This model is interpretable in the sense that users can
visualize the relationship between the univariate terms of the GAM and the
dependent variable through a plot fi(xi) vs. xi. The formula illustrates
how GAMs are a more powerful generalization of logistic regression models,
replacing the linear functions αixi with more complex non-linear functions
fi(xi).

One of the reasons why GAMs have been less popular up until now is lack
of a mature and widely available implementation. However, in summer
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2019, Microsoft released InterpretML [124], an open-source Python package
which exposes interpretable machine learning algorithms to practitioners and
researchers. One of the contributions in InterpretML is the first implementation
of the Explainable Boosting Machine (EBM). EBM is an implementation of a
GAM that uses a boosting mechanism to learn the univariate functions and can
also model the most important pairwise interactions among features. EBM is
interpretable, yet can be nearly as accurate as many blackbox models such as
XGBoost.

5.2.4 Evaluation Metrics

There exist three popular metrics to evaluate probabilistic classifiers: area under
the ROC curve (AUROC), Brier score, and logarithmic loss. We first discuss
the three evaluation metrics in detail and then offer our insights on when to
use which metric.

AUROC The area under the receiver operator curve (AUROC) evaluates how
well a classifier can differentiate positive examples from negative examples.
Intuitively, AUROC answers the following question: “Given a positive
example and a negative example, how likely is it that our classifier will
correctly rank the positive example ahead of the negative example?”. Note
that even random guessing will achieve an AUROC of 50%. This offers a
naive baseline any probabilistic classifier should always beat. One crucial
aspect of AUROC that often goes ignored is that it is in essence a ranking
metric. AUROC only considers the relative ranking of examples and
ignores the actual predicted probabilities. This means that a classifier can
be poorly calibrated, yet still achieve great AUROC.

Brier score The Brier score (BS) is a proper scoring rule that measures the
accuracy of probabilistic predictions. A proper scoring rule is a metric
that can only be minimized by reporting the true class distribution. It is
essentially the mean squared error between the predictions and the labels
and has the following formula:

BS = 1
N

N∑
i

(pi − yi)2

in which N is the number of examples, pi is the probability that was
predicted for example i and yi is the label (0 or 1) of example i.

Logarithmic loss The logarithmic loss (LL) is also a proper scoring rule that
measures the accuracy of probabilistic predictions. The biggest difference
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with Brier score lies in the way that it weighs individual prediction errors.
Logarithmic loss has strong foundations in information theory and its
formula is:

LL = 1
N

N∑
i

yi log pi + (1− yi) log(1− pi).

A common oversight in soccer analytics research is building predictive models by
optimizing and evaluating on one of the above metrics without critical thought
on why to use a specific evaluation metric. Some works [127, 47, 108] overlook
the fact that the choice of evaluation metric should depend on the specific use
case in which the predictive model will be used. We now discuss our insights
on when each metric is applicable.

Choosing whether or not to use AUROC is relatively straightforward. AUROC
is the best metric for (a) classification tasks or (b) ranking examples based on
how likely they are to be positive or negative. An example use case is using the
outputted probabilities of a learned model to determine the top-k game states
that are most likely to result in a goal.

When we care about using the actual values of the probabilities, the choice
is between the Brier score and logarithmic loss as AUROC is not suitable.
Unfortunately, it is less clear when one should use the Brier score versus
logarithimc loss. Brier score and logarithmic loss are similar in the sense that
they are both proper scoring rules and can both only be minimized by reducing
the individual prediction errors. However, they differ in how they aggregate the
individual prediction errors.

To illustrate this difference and to more easily compare the two metrics, let
ei = |pi− yi| be the prediction error for example i. Using this definition and the
multiplication rule for logarithms, we can simplify the formulas for the Brier
score and logarithmic loss to:

BS = 1
N

N∑
i

e2
i

and

LL = 1
N

N∑
i

log(1− ei) = 1
N

log(
N∏
i

1− ei).

This rewrite illustrates howthe Brier score is simply the mean squared error.
Moreover, the Brier score combines individual prediction errors by summing
them while the logarithmic loss combines individual prediction errors by
multiplying them.



64 VAEP: A FRAMEWORK FOR VALUING ACTIONS

This insight is the reason we recommend to use Brier score to build a predictive
model if the resulting probabilities will be summed or subtracted. For example,
in this chapter we construct player ratings by summing the deltas between
game state probabilities and thus use Brier Score to evaluate the probabilistic
classifiers. We recommend to use logarithmic loss if the resulting probabilities
from the predictive model are more likely to be used in multiplications, such
as in [47] and [60], where the resulting probabilities are multiplied with the
probabilities of predictive models of other tasks. Other use cases where
probabilities are often used in multiplications are simulations, reinforcement
learning, and recommender systems.

In summary, which evaluation metric to use depends on what the probabilities
outputted by the predictive model will be used for. We recommend to use
AUROC when ranking probabilities or classifying examples, Brier score when
summing or subtracting probabilities, and log loss when multiplying or dividing
probabilities.

5.3 Experiments

Evaluating the VAEP framework is challenging as no objective ground truth
action values or player ratings exist. Therefore, our experiments address three
main questions: (1) providing intuitions into how our framework behaves
and compares to other metrics, (2) presenting use cases revolving around
player acquisition and characterization, and (3) evaluating several of our design
decisions.

In most of this section, we focus our analysis on Wyscout data in the SPADL
format for the English, Spanish, German, Italian, French, Dutch, and Belgian
top divisions. We apply the VAEP framework to 11565 games played in the
2012/2013 through 2017/2018 seasons. We only consider league games and thus
ignore all friendly, cup, and European games.

To produce scoring and conceding probabilities, action values and player ratings,
we trained two classification models using the features and labels detailed in
section 5.2 and the CatBoost algorithm, which is a gradient boosting decision
tree algorithm extremely similar to XGBoost [35, 139]). We trained the first
model on the 2012/2013 through 2015/2016 seasons to produce the outcomes for
the 2016/2017 season. Similarly, we trained the second model on the 2012/2013
through 2016/2017 seasons to produce the outcomes for the 2017/2018 season.

In the last two parts of this section (5.3.6 and 5.3.7), we train and evaluate a
model on StatsBomb data in the SPADL format of the 2017/18 and 2018/19
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Figure 5.1: The attack leading up to Barcelona’s final goal in their 3-0 win
against Real Madrid on December 23, 2017.

English Premier League.

5.3.1 Intuition Behind the Action Values

Figure 5.1 illustrates how our framework works by visualizing the actions and
their corresponding values that led to Barcelona’s goal in the 93rd minute of
their game away against Real Madrid on December 23, 2017.

The attack consists of six actions and starts with Sergio Busquets passing the
ball towards the right flank (1), which receives a neutral action value of 0.00
since it neither improves nor worsens the situation. The subsequent pass from
Lionel Messi back to Busquets (2) is penalized with an action value of -0.01 since
it moves the ball backwards to a less favorable position than before. Busquet’s
excellent through ball to Messi (3), which finally moves the ball closer to the
goal, receives an action value of +0.01. Messi receives the ball and dribbles
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past a Real Madrid defender into the box (4), which receives an action value of
+0.05 for significantly raising the scoring odds from 0.03 to 0.08.

Messi’s next action showcases his genius, passing the ball backwards and away
from the crowded six yard box (5). Our framework awards this pass a value
of +0.09 for raising the scoring odds from 0.08 to 0.17. This action shows the
power of our framework, which rewards Messi for moving the ball away from
the opponent’s goal. In a purely data-driven way, our framework identifies this
action to be a good choice given the circumstances. To our knowledge, no other
method for valuing actions using event stream data would reward Messi for this
action. Finally, Aleix Vidal shoots the ball in (6). For converting a 0.17 scoring
chance to a goal, our framework rewards Vidal with an action value of +0.83.
If Vidal had missed his shot, he would have been penalized with an action value
of -0.17.

5.3.2 Comparing our VAEP Player Ratings to Traditional
Player Performance Metrics

Currently, players’ offensive contributions are usually quantified by counting
goals and assists, as those events directly influence the score line.2 Therefore, we
compare our VAEP player ratings against the following three baseline metrics:
goals per 90 minutes, assists per 90 minutes, and goals + assists per 90 minutes.
We investigate these metrics’ capabilities to identify top players by producing
each metric’s top-10 list for the 2017/2018 English Premier League season, which
are shown in Table 5.1. The top-10 in terms of goals per 90 minutes consists of
strikers who focus on finishing rather than creating scoring chances. Similarly,
the top-10 in terms of assists per 90 minutes mostly consists of midfielders who
primarily specialize in setting up chances for their teammates. The ranking in
terms of goals + assists per 90 minutes appears to strike a balance between
both archetypes.

However, our framework also identifies impactful players who do not rate high on
these traditional metrics. First, the top-10 list produced by our VAEP framework
features Kevin De Bruyne (Manchester City), Eden Hazard (Chelsea), and Riyad
Mahrez (Leicester City). Although considered Premier League stars, they do
not appear in any of the traditional top-10s. Second, the combined market
value3 for the players in our top-10 list (1,110 million euro) is considerably
higher than that for goals (862 million euro), assists (760 million euro), and
goals + assists (947 million euro).

2https://www.squawka.com/en/news/every-player-with-10-goals-and-10-assists-
in-europes-top-five-leagues-this-season-ranked-by-contribution-per-90/1031863

3According to https://www.transfermarkt.co.uk/ on February 1st, 2019.

https://www.squawka.com/en/news/every-player-with-10-goals-and-10-assists-in-europes-top-five-leagues-this-season-ranked-by-contribution-per-90/1031863
https://www.squawka.com/en/news/every-player-with-10-goals-and-10-assists-in-europes-top-five-leagues-this-season-ranked-by-contribution-per-90/1031863
https://www.transfermarkt.co.uk/
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These observations suggest that our VAEP framework captures players’
contributions to their teams’ performances better than the traditional player
performance metrics.

5.3.3 Identifying Promising Young Players and Minor League
Talent

The English and Spanish leagues are the toughest and wealthiest by far. Hence,
young players struggle to earn playing time, which forces the clubs to sign
promising youngsters from smaller leagues such as the French, Dutch, and
Belgian leagues. Typically, it is easier and especially cheaper for English and
Spanish clubs to acquire promising youngsters from these leagues than from
direct rivals. Therefore, we investigate the top-ranked young talents (i.e., players
born after January 1, 1997 who played at least 900 minutes) separately for the
2017/18 season in the English and Spanish leagues (Table 5.2a), and the French,
Dutch and Belgian leagues (Table 5.2b).

Marcus Rashford, who was linked with a € 110 million move to Real Madrid
in January 2019,4 and Ousmane Dembélé, who moved to Barcelona in August
2017 for a fee of € 120 million, are the most notable players in Table 5.2a. In
contrast, the fourth-ranked but lesser-known Jonjoe Kenny has a much lower
estimated market value than both of these players due to two reasons. First,
Kenny is a defensive player, who are typically valued lower than offensive players
by clubs and fans. Second, Kenny plays for mid-table club Everton, where he is
surrounded by only a few world-class players. Nevertheless, our player ratings
suggest a much higher valuation than his estimated market value of €5 million
on February 1st, 2019.

David Neres tops Table 5.2b. In the summer of 2017, the winger became the
fourth most expensive incoming transfer in the Dutch league when Ajax acquired
him for € 15 million. He was a transfer target for top clubs Liverpool, Chelsea,
and Arsenal, who all wished to sign him in the summer of 2019. Second-ranked
Mason Mount was with Dutch side Vitesse on a season-long loan from Chelsea
and received Vitesse’s Player of the Year Award. Fourth-ranked Kylian Mbappé
won the Best Young Player Award at the 2018 World Cup, while both Malcom
(summer 2018, fee € 41 million) and Frenkie de Jong (summer 2019, fee € 75
million) have signed with Barcelona.

Tables 5.2a and 5.2b demonstrate our framework’s ability to serve as a useful
tool for talent scouts. Our framework can generate rankings for each league in

4https://www.thesun.co.uk/sport/football/8318008/real-madrid-marcus-rashford-
transfer-man-utd/

https://www.thesun.co.uk/sport/football/8318008/real-madrid-marcus-rashford-transfer-man-utd/
https://www.thesun.co.uk/sport/football/8318008/real-madrid-marcus-rashford-transfer-man-utd/
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Table 5.1: The top-10 players who played at least 900 minutes in the 2017/2018
English Premier League season in terms of (g) goals, (a) assists, (g+a) goals +
assists, and (vaep) our VAEP player ratings. Rm denotes the rank of the player
out of 305 players for metric m. The market value denotes the player’s market
value on February 1st, 2019 according to Transfermarkt.

(a) Top-10 players in terms of goals per
90 minutes (g/90)

Rg Player g/90 Rvaep Market Value
1 M. Salah 0.986 2 € 150m
2 S. Agüero 0.960 14 € 75m
3 P. Aubameyang 0.851 42 € 75m
4 H. Kane 0.847 9 € 150m
5 G. Jesus 0.700 204 € 70m
6 O. Niasse 0.666 17 € 7m
7 R. Sterling 0.625 7 € 120m
8 C. Austin 0.612 117 € 10m
9 A. Lacazette 0.570 49 € 65m
10 P. Coutinho 0.565 1 € 140m

(b) Top-10 players in terms of assists per
90 minutes (a/90)

Ra Player a/90 Rvaep Market Value
1 H. Mkhitaryan 0.484 114 € 30m
2 P. Coutinho 0.484 1 € 140m
3 L. Sané 0.482 47 € 100m
4 K. De Bruyne 0.467 3 € 150m
5 D. Silva 0.369 13 € 25m
6 R. Sterling 0.347 7 € 120m
7 P. Aubameyang 0.340 42 € 75m
8 M. Özil 0.333 15 € 35m
9 P. Pogba 0.332 8 € 80m
10 C. Brunt 0.327 73 € 2m

(c) Top-10 players in terms of goals + assists per 90 minutes (g+a/90)

Rg+a Player g+a/90 Rvaep Market Value
1 S. Agüero 1.235 14 € 75m
2 M. Salah 1.232 2 € 150m
3 P. Aubameyang 1.191 42 € 75m
4 P. Coutinho 1.049 1 € 140m
5 R. Sterling 0.972 7 € 120m
6 H. Kane 0.905 9 € 150m
7 L. Sané 0.853 47 € 100m
8 G. Jesus 0.808 204 € 70m
9 A. Martial 0.795 6 € 60m
10 O. Niasse 0.749 17 € 7m

(d) Top-10 players in terms of our VAEP player ratings

Rvaep Player Rating Rg Ra Rg+a Market Value
1 P. Coutinho 0.899 10 2 4 € 140m
2 M. Salah 0.817 1 23 2 € 150m
3 K. De Bruyne 0.641 72 4 15 € 150m
4 E. Hazard 0.636 21 122 34 € 150m
5 R. Mahrez 0.635 34 11 16 € 60m
6 A. Martial 0.607 13 13 9 € 60m
7 R. Sterling 0.579 7 6 5 € 120m
8 P. Pogba 0.549 55 9 28 € 80m
9 H. Kane 0.545 4 140 6 € 150m
10 S. Heung-Min 0.539 19 36 17 € 50m
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Table 5.2: The top-5 players born after January 1, 1997 in terms of our VAEP
player ratings during the 2017/2018 season in (a) the tougher English and
Spanish leagues, and (b) the smaller French, Dutch, and Belgian leagues.

(a) Young talents in the English and Spanish leagues.

Rank Name Team Age Rating Market Value
1 M. Rashford Man United 20 0.406 € 65m
2 T. Alexander-Arnold Liverpool 19 0.405 € 45m
3 O. Dembélé Barcelona 20 0.360 € 80m
4 J. Kenny Everton 21 0.344 € 5m
5 M. Oyarzabal Real Sociedad 21 0.337 € 40m

(b) Young talents in the French, Dutch, and Belgian leagues.

Rank Name Team Age Rating Market Value
1 D. Neres Ajax 21 0.620 € 25m
2 M. Mount Vitesse 19 0.616 € 4m
3 Malcom Bordeaux 21 0.567 € 40m
4 K. Mbappé PSG 19 0.507 € 200m
5 F. de Jong Ajax 20 0.495 € 60m

the world (e.g., second divisions or leagues in North America, South America,
and Asia) given that the required event stream data is available.

5.3.4 Characterizing Playing Style

Clubs are increasingly considering player styles during the recruitment process
to identify players who best suit their team’s preferred style of play (e.g., short
passes and high defending vs. long balls and defensive play). Currently, scouts
are typically tasked with judging playing styles with the naked eye. However,
these scouts’ time is often the limiting resource, which makes it difficult to
consider the entire pool of candidate reinforcements. Therefore, metrics that
assess a player’s ability to perform different types of actions can help select
a relevant set of players who are worth extra attention. Using our VAEP
framework, addressing this task boils down to computing a player’s rating per
90 minutes for each type of action.

As a concrete use case, consider Barcelona’s attempts in the summer of 2017 to
offset the loss of Neymar by acquiring Borussia Dortmund’s Ousmane Dembélé
and Liverpool’s Philippe Coutinho. Figure 5.2a compares Dembélé, Coutinho
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(a) Playing style of replacement players for Neymar

(b) Playing style of replacement players for Ronaldo

Figure 5.2: Overview of the total contribution per 90 minutes for different types
of actions for (a) Neymar, Ousmane Dembélé, and Philippe Coutinho during
the 2016/2017 season, and (b) Cristiano Ronaldo, Marcus Rashford, and Eden
Hazard during the 2017/2018 season.

and Neymar’s total ratings per 90 minutes for four action types. According to
our metric, both Dembélé and Coutinho’s passes receive a higher value than
Neymar’s while Neymar is a superior dribbler. From a stylistic perspective,
this breakdown suggests that both Dembélé and Coutinho were reasonable
targets as not many players come close to replicating Neymar’s signature skill
of dribbling. Dembélé and Coutinho are decent dribblers and better passers
than Neymar. In addition, Dembélé outperforms Neymar in crossing, while
Coutinho outperforms him in shooting.

Similarly, Real Madrid lost their all-time top scorer Cristiano Ronaldo in the
summer of 2018. In the subsequent season, the struggling club appeared in
desperate need of a suitable replacement. Manchester United’s Marcus Rashford
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and Chelsea’s Eden Hazard were both linked with moves to Madrid. However,
Figure 5.2b shows that neither came close to replicating Ronaldo’s incredible
finishing skill. Moreover, Ronaldo exhibits a higher total shot value per 90
minutes than Rashford and Hazard combined. While Hazard outperforms
Rashford in every aspect, Rashford is closer to Ronaldo in terms of style as
both rate similarly for passing and dribbling. Given that Real Madrid acquired
Eden Hazard in summer 2019, we can assume that they preferred a more
experienced player that could immediately strengthen their team, even if he
was less compatible with their playing style, over the younger Rashford who
would allow them to stick with the same playing style as in the Ronaldo-era.

5.3.5 Trading Off Action Quality and Quantity

A natural tension exists between the quality and quantity of actions. If a player
performs a high number of actions, then it is harder for each action to have
a high value. Figure 5.3a shows the number of actions that players execute
on average per 90 minutes (quantity) and the average value of these actions
(quality) for those players who played at least 900 minutes during the 2017/18
season in the Spanish and English leagues. The grey-dotted isoline shows the
gap in VAEP rating between top-ranked Lionel Messi and the rest. The isoline
is curved as a player’s rating is obtained by multiplying the average value per
action (x-axis) and the average number of actions (y-axis). As shown by the
isoline and more traditional statistics,5 Messi is clearly in a class of his own.

Zooming in on Figure 5.3a, Figure 5.3b shows the top-10 players in the 2017/18
English Premier League season. Strikers Harry Kane and Mohammed Salah
perform a relatively low number of actions but their actions are highly valued
on average. Midfielders Kevin De Bruyne and Paul Pogba perform more actions
albeit with a lower average value per action. Philippe Coutinho, Eden Hazard,
Riyad Mahrez, Anthony Martial, Raheem Sterling, and Son Heung-min fall in
between these two archetypes, hitting a sweet spot between the quality and
quantity of their actions.

Similarly, Figure 5.3c shows the top-10 players in the Spanish league. We observe
the same archetypes as for the English league. Strikers Cristiano Ronaldo,
Antoine Griezmann, Gareth Bale, Enis Bardhi, Iago Aspas, and Cédric Bakambu
perform a low number of highly valuable actions. Real Madrid midfielders Toni
Kroos and Isco perform more actions that are less valuable. Philippe Coutinho,
who appears in both figures following his move from Liverpool to Barcelona in
January 2018, again hits the sweet spot between action quality and quantity.

5https://fivethirtyeight.com/features/lionel-messi-is-impossible/

https://fivethirtyeight.com/features/lionel-messi-is-impossible/
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(a) All players

(b) Top-10 players in the English league (c) Top-10 players in the Spanish league

Figure 5.3: Scatter plots of players in the 2017/18 season who played at least
900 minutes in the Spanish or English league. The plots contrast the average
number of actions performed per 90 minutes with the average value of the
actions of the player. As shown by the grey-dotted isoline in (a) and (c), Lionel
Messi is clearly in a class of his own.

Lionel Messi is an outlier in the sense that he rates high on action quality and
quantity at the same time.

5.3.6 Interplay between Feature Sets and Classifiers

A common challenge in data science is to evaluate the performance of a system.
While it can be easy to define a high-level task such as assigning values to
actions, one underappreciated aspect of evaluating the solution is that usually no
ground truth exists and standard evaluation metrics such as accuracy, precision
and recall thus cannot be used. As a result, the only way to evaluate a system
is to evaluate the components it consists of. In our case, we evaluate the action
values by evaluating the underlying scoring probabilities for which ground truth
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labels are available. The goal of this subsection is to understand the effect of
the interplay between the complexity of the feature set used to describe the
game state and the selected probabilistic classifier used to estimate scoring
probabilities for each game state.

We evaluate the performance of three classifiers: Logistic Regression [129],
XGBoost [35], and Generalized Additive Models [124]. For all three classifiers,
we perform no tuning and set all parameters to the default values of their
respective implementations.678 Some examples of these default parameters are
Logistic Regression using the L2 regularization penalty and L-BFGS as the
optimization problem solver, XGBoost using 100 trees of maximum depth 6,
and the GAM using 16 estimators to construct each univariate function. The
only exception is that we allowed the GAM to learn three pairwise interaction
terms rather than its default value of zero. This parameter was changed to
leverage the full capabilities of the underlying implementation of the GAM.

For each classifier, we also consider the following three sets of features:

Location only The (x, y)-coordinates of the last action in game state Si.

VAEP The set of 151 features detailed in Section 5.2.

Top-10 The top-10 most important features from the VAEP feature set. These
features were selected using the built-in ordering of feature importance
available in the implementations of the XGBoost and GAM models.

Our data set for this experiment consists of event stream data of 760 matches
from seasons 2017/18 and 2018/19 of the English Premier League. The data
was provided to us by StatsBomb and then converted to the SPADL format.
We trained each classifier-feature set combination on 747,813 game states in
the 2017/18 Premier League season and evaluated them using the Brier score
on 789,108 game states in the 2018/19 Premier League season.

We evaluate the performance of each approach using the Brier score, which
measures the accuracy and calibration of the predictions and is minimized when
the true underlying probability distribution of the data is reported [63]. This
property is important because we sum and subtract the predicted probabilities
to generate action values.

Table 5.3 reports the Brier scores for each classifier-feature set combination.
From these results, we can infer the following conclusions:

6https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.
LogisticRegression.html

7https://github.com/dmlc/xgboost
8https://github.com/interpretml/interpret

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://github.com/dmlc/xgboost
https://github.com/interpretml/interpret
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Features Classifier
LogReg XGBoost GAMs

Location only 0.01112 0.01087 0.01087
VAEP 0.01010 0.00966 0.00968
Top-10 0.01030 0.00970 0.00971

Table 5.3: Brier score (lower is better) of three different feature sets using three
different probabilistic classifiers: Logistic Regression (LogReg), XGBoost, and
Generalized Additive Models (GAMs).

Only considering location is insufficient. As can be seen in the first row of
Table 5.3, Logistic regression achieves a Brier score of 0.01112, while both
XGBoost and GAMs achieve a Brier score of 0.01087. These scores only
slightly improve upon the Brier score obtained when using the class prior
as the predicted probability (0.01128), a common baseline in probabilistic
classification tasks. Furthermore, regardless of the learning method, only
using the location does not come close to matching the performance of
using a more expansive and expressive feature set.

Having a model that captures non-linearities helps. Regardless of the
feature set, XGBoost and GAMs offer substantial improvements on
predictive performance compared to using logistic regression. For the
location only feature set, Figure 5.4 clearly demonstrates how GAMs are
capable of capturing non-linear correlations between the features and the
target variable, while Logistic Regression is not.

A small feature set can yield excellent performance. Compared to see-
ing the full set of 151 features (second row in Table 5.3), using the top
10 features only slightly decreases performance (third row in Table 5.3).
However, using fewer features highly enhances the interpretability of these
models. The Brier score of the GAM (0.00968) is again similar to the
performance of XGBoost (0.00966).

In summary, regardless of the feature set GAMs achieve a performance that
is better than Logistic Regression and comparable to that of XGBoost, while
remaining interpretable.

5.3.7 Discussion of the Top-10 Features

Figure 5.5 details the ten univariate functions that make up the GAM that
almost matches XGBoost’s performance and provides some insights in what
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(a) (b)

Figure 5.4: A Generalized Additive Model (GAM) consisting of two univariate
models using (a) the x-coordinate and (b) the y-coordinate of a game state.
The GAM predicts the probability of scoring a goal from a given x, y-location
by summing the scores of the univariate models per feature and converting the
resulting sum to a probability P ∈ [0, 1] using the logit linking function. The
straight orange line represents the weight given to the feature by a Logistic
Regression model (LogReg) and illustrates the difference in predictive power.

makes a game state (and an action) likely to result in a scored goal. The figure
also includes the scores of an example game state to illustrate how a GAM can
be used to understand the reasoning behind individual predictions.

Panels (a-c) capture location-based aspects of the game state. In Panel (a), we
see that as the ball gets closer and closer to the center of the opponent’s goal,
the chances of scoring increase. This correlation increases dramatically when
the ball is very close to the center of the goal. In Panel (b), we can see that
being aligned to the center of the goal slightly increases the chance of scoring
whereas being at a tight angle decreases it. This makes sense, as a shooter likely
has more places to aim when positioned in front of the goal. Finally, Panel
(c) shows that when the ball enters the final third, there is a strong positive
correlation with scoring. This increases as the ball gets closer to the endline
behind the opponents goal, but not as dramatically as in Panel (a).

Panels (d-f) capture contextual aspects of the game state. Panel (d) shows
how the probability of scoring is dramatically reduced if the last action was
not successful. This makes sense, as in the SPADL representation an action
not being successful means that the team has lost possession of the ball and
therefore cannot attempt to score without first regaining possession.

Panel (e) shows an even stronger impact on goal scoring probability if the last
action was a foul. The effect captured here is that while there might still be a
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) Example game state

Figure 5.5: Univariate functions of the ten features (a-j) that make up the GAM
that predicts the short-term goal-scoring probability from a given game state.
The red dots denote the scores of an example game state (k) with a short-term
goal-scoring probability of 4.9%. This goal-scoring probability is computed
using the formula g−1(

∑m
i fi(xi)) where fi(xi) are the scores in Panels (a-j)

and g−1 is the inverse logit function. The two features that have the biggest
positive impact on the goal-scoring probability of the example game state are
(a) the small distance to the goal and (c) the high X-coordinate. The feature
with the biggest negative impact is (b) the bad angle to the goal.
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slim chance that a team can quickly recover the ball following an unsuccessful
action, this becomes virtually impossible if the team committed a foul. The
reason is that after a foul the game temporarily suspends and is no longer
in open play. This allows the players of the opposing team who are now in
possession of the ball enough time to position themselves such that they obtain
the maximum tactical advantage.

Panel (f) shows that the probability of scoring varies based on the score
difference, with teams leading by ≥ 2 being more likely to score. Robberechts et
al. [144] showed that the probability of scoring a goal changes with the goalscore
difference. However, we currently are unsure of whether this is a causal effect
(i.e., being three goals ahead or tree goals behind has an effect on the mental
state of a player, making them perform better or worse actions [21]) or whether
this is simply a correlation (i.e., a team that is three goals ahead in a match is
a good team with an above average finishing rate, therefore its games states are
more valuable). Researching this further is an interesting direction for future
work.

Panels (g-j) capture aspects about the speed of play. On Panels (g-i) as the
values on the x-axis increase, it indicates that the ball is moving longer distances
and hence getting closer and closer to your opponent’s goal. In Panel (j), as
the value on the x-axis decreases, this indicates that there is less time between
consecutive actions. This may be a proxy for the ball moving more rapidly.
Hence, in combination, these last four features hint towards the speed of play
during the game state. This can be an important factor to decide goal-scoring
probability, i.e., the odds of scoring are usually higher during a quick counter-
attack than during slow build-up play.

For each of the three location-based features in Panels (a-c), the GAM also
learns a pairwise interaction term where it combines each feature with the
successfulness of the action in Panel (d). These interaction terms help fine-tune
the performance of the GAM for specific examples, but are also more challenging
to interpret than the simple univariate functions in Figure 5.5.

5.4 Related Work

While valuing player actions in soccer is an important task, it has remained
virtually unexplored due to the challenges resulting from the dynamic and
low-scoring nature of soccer. The approaches from [125], [21] and [60] for
soccer, [146] and [107] for ice hockey, and [32] for basketball come closest to
our framework. Most of these approaches address the task of valuing individual
actions by modeling a game as a Markov game [105]. In contrast to [125] and



78 VAEP: A FRAMEWORK FOR VALUING ACTIONS

[146], which divide the pitch into a fixed number of zones, our approach models
the exact locations of each action. Unlike [32], which values only three types
of on-the-ball actions, our approach considers any relevant on-the-ball action
during a game. However, our definitions of player actions, game states, and
action values are similar to those used by these works as well as earlier research
for soccer [147, 86], American football [76], and baseball [170].

Most of the related work on soccer either focuses on a limited number of player
action types like passes and shots or fails to account for the circumstances under
which the actions occurred. [51], [98], and [79] address the task of valuing the
actions leading up to a goal attempt, whereas [24], [22], and [84] address the
task of valuing individual passes. The former approaches naively assign credit
to the individual actions by accounting for a limited amount of contextual
information only, while the latter approaches are limited to a single type of
action.

Furthermore, this work is also related to expected-goals models, which estimate
the probability of a goal attempt resulting into a goal [108, 27, 6, 110, 47]. In
our VAEP framework, computing the expected-goals value of a goal attempt
boils down to estimating the value of the game state prior to the goal attempt.

5.5 Discussion of Remaining Challenges

One limitation of our VAEP framework is that we only value on-the-ball actions.
That is, the model only values actions with the ball, while defending is often
more about preventing your opponent from gaining possession of the ball by
clever positioning and anticipation.

Another challenge is that it is hard to accurately compare players across leagues,
as it is easier to perform highly valuable actions in minor leagues (e.g., French,
Dutch, and Belgian) than in tougher leagues (e.g., English and Spanish). This
can be clearly observed in Section 5.3.3 where the young talents in the minor
leagues receive a higher rating than those in the English and Spanish leagues.

Similarly, it can even be hard to accurately compare players across clubs in the
same league as it is generally easier to perform valuable actions in a top club
with strong teammates, than in a mid-table club with weaker teammates.

The final challenge for deploying our framework in the real world is building
trust in the ratings as traditional scouts are unfamiliar with our way of rating
soccer players. In addition, our ratings are slightly less intuitive than traditional
metrics such as goals per 90 minutes, which complicates the task for analytically
less inclined scouts to understand what our ratings measure precisely.
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5.6 Conclusion

This chapter introduced VAEP, a framework for assigning a value to each
individual player action during a soccer game. The advantages of VAEP over
most existing works are that it (1) values all action types (e.g., passes, crosses,
dribbles, shots), (2) considers both the offensive and defensive value of actions,
(3) bases its valuation on a more complete view of the game context, and (4)
reasons about an action’s possible effects on the subsequent actions. Intuitively,
the player actions that increase a team’s chance of scoring receive positive values
while those actions that decrease a team’s chance of scoring receive negative
values.





Chapter 6

Automatic Discovery of Team
Tactics

In this chapter, we propose an approach to find patterns in event stream data
of professional soccer matches. On a high level, our approach performs the
following five steps. First, the algorithm splits the match into phases, which
are uninterrupted sequences of events where one team is in possession of the
ball. Second, we cluster these phases by their spatio-temporal characteristics.
Third, we rank each cluster according to their expected relevance to the user.
Fourth, we search for frequently occurring patterns (i.e., sequences of events)
within each cluster. Fifth, based on domain knowledge, we develop a ranking
function that orders the discovered patterns in each cluster according to their
expected relevance to the user.

We evaluate our approach on Opta event stream data from the 2015/2016 season
of the English Premier League. We let a domain expert inspect the discovered
patterns and find that our approach is capable of identifying interesting tactics.
Furthermore, we evaluate how each of our design choices contributes to the
overall performance of the system.

The content of this chapter is based on the following publication [50]:

Decroos, T., Van Haaren, J., and Davis, J. Automatic Discovery of
Tactics in Spatio-Temporal Soccer Match Data. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining
(2018), pp. 223–232

81
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Table 6.1: Special types of passes and their frequencies

Event type Frequency
pass 100.00%
normal pass 67.72%
long ball 16.52%
head pass 8.03%
throw in 4.78%
cross 4.24%
free kick 2.47%
corner 1.11%
through ball 0.28%

6.1 Dataset

Our dataset consists of raw event stream data for the English Premier League for
the 2015/16 season.1 The dataset contains 652,907 events of 39 different types,
which are related to either the flow of the match (e.g., a player substitution,
a yellow card, an awarded corner) or the action on the pitch (e.g., a shot,
a clearance, or a foul).2 This corresponds to an average of 1,718 events per
match. The most frequent event types in our dataset are “pass” (368,426), “out”
(48,046), and “ball recovery” (41,448).

Passes are a special type of event. These can sometimes be of a more specific
type, such as a “cross”. This is stored as additional information. Table 6.1
shows an overview of the type of special passes, along with their frequency.
Note that sometimes passes can have multiple specific types. For example, a
pass can be both a “corner” and a “cross” at the same time.

Another special type of event are shots. These are registered in the data as
four different event types based on their outcome: goal, miss, attempt saved or
post (i.e., the ball hit the post). Hence, if we want to analyze the shots in our
database, we have to aggregate over these event types.

1Note that in this chapter we do not use the SPADL format of Chapter 3, but instead use
raw event stream data of a prominent vendor. The reason for this is that the contributions in
this chapter chronologically precede the creation of the SPADL format. In fact, some of the
challenges encountered in this chapter directly inspired the creation of SPADL.

2Because of the nature of raw Opta event stream data, we adopt the terminology of events
and event sequences in this chapter, rather than actions and action sequences as in all other
chapters in this dissertation.
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6.2 Approach

The goal of our approach is to identify common attacking tactics employed by
a specific team. Formally, our task can be defined as:

Given: A set of matches, where each match is represented as an event sequence,
about a team of interest.

Find: Relevant spatio-temporal patterns that characterize attacking tactics.

Soccer is a highly dynamic game with many movements and interactions among
players across time and space. In addition to the nine challenges outlined in
Section 3.4, three other specific challenges arise when detecting tactics:

Challenge 10: Tactics involve coping with both a spatial component, as
the location where an event occurs is important, as well as a temporal
component, as the order of events is important.

Challenge 11: Identifying interesting and relevant patterns is a highly
subjective decision. Certain sequences of play, such as high-quality
attempts on goal occur infrequently, but are of high interest.

Challenge 12: Teams do not employ a single tactic. Each team has several
different tactics during a game. Furthermore, each tactic has minor
variations.

To tackle these challenges, we perform the following five steps.

1. Divide the event stream of each match into phases.

2. Cluster the phases based on their spatio-temporal component.

3. Rank the clusters based on the preferences of the user.

4. Mine each of the obtained clusters to identify frequent sequential patterns.

5. Rank the discovered patterns based on the preferences of the user.

The following subsections discuss each of these five steps in more detail.
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6.2.1 Dividing a Match Event Stream into Phases

Formally, each match is represented as a sequence of events [e1, . . . , en], where
each ei is an event and n is the total number of events. Each event ei is a tuple
ei = (t, l, p, et), where t is a timestamp, l is the location on the pitch where
the event took place as given by its x and y coordinates, p is the set of players
involved in the event, and et is the event type. We use ET to refer to the set of
all possible event types.

In terms of tactics, a sequence representing an entire match represents too
coarse of a granularity to consider for analysis. Tactics will manifest themselves
as short, consecutive sequences of actions on the pitch such as attacking through
the middle or playing a through pass. Therefore, a more natural unit to analyze
is what a domain expert may call a “soccer gameplay phase” or simply a phase
(e.g., a corner, an attack from the left flank, a turnover). A phase is a sequence of
consecutive events that fit together. An added benefit of a phase representation
is that it is easier to find patterns in multiple, shorter event sequences than
one long event sequence. Therefore, we split the event stream of a match into
phases in a similar manner as we did in Chapter 4. Figure 6.1 shows an example
of a phase.

Each match is subdivided into phases, where each phase P is subsequence of
consecutive events [ea, . . . , eb]. A new phase starts if there

1. Is a pause of at least 10 seconds between events; or

2. Possession switches from one team to the other (e.g., a successful tackle,
the ball goes out of play for a throw-in or corner kick, a goal is scored, or
a free kick is awarded).

We only consider phases that have at least three events. Phases with only one
or two events are usually not very informative about the playing style of a team.
Figure 6.2 shows the distribution of phase lengths for Manchester City in the
2015-2016 English Premier League season. Finally, like in many sports, teams
switch which goal they are attacking at halftime. Comparing phases that attack
different goals is difficult, so we normalize each phase such that the team of
interest is always playing left to right.

Another approach to divide the match event stream into phases is to divide the
event stream into subsequences of constant length (e.g., windows of length 10
seconds) [47]. While this approach is more straightforward, it has two important
drawbacks. First, the time between two consecutive events can differ greatly
from one match to another due to a difference in intensity and the unreliability
of human annotators. This would lead to many uninformative phases being
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Figure 6.1: An example phase in our data. A phase is a sequence of consecutive
events that fit together according to a domain expert.

Figure 6.2: Distribution of phase lengths for Manchester City in the 2015-2016
English Premier League season.
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constructed. Second, using this approach would result in many phases where
both teams possessed the ball and performed actions during the phase, making
it more difficult to infer the tactics of one specific team.

6.2.2 Clustering Phases on their Spatio-Temporal Component

The goal of the second step is to identify similar spatio-temporal phases via
clustering. We do this for two reasons. One, this helps reduce the space of
possible patterns that we need to search in step four. Two, a team is likely to
employ multiple different attacking tactics, such as corners, attacking through
the middle, down the flank, each of which will be characterized by different
spatial characteristics. Clustering gives us a natural way to divide the data
along these lines.

In this chapter, we use hierarchical agglomerative clustering, which is a popular
and simple approach for clustering data [58]. To measure the distance between
two clusters, we use the complete-linkage metric. Complete-linkage clustering
tends to find compact clusters of approximately equal diameters but not
necessarily equal number of objects [58], which is precisely the type of clustering
we want.

The clustering works as follows. First, each element is assigned its own cluster.
Next, clusters are iteratively merged together until a stop criteria is met. In
each iteration, the two clusters separated by the shortest distance are combined.
Complete-linkage clustering computes the distance between two clusters as the
distance between those two elements (one in each cluster) that are farthest
away from each other. In this work, we stop once there are k clusters remaining,
where k is a user-defined parameter.

A crucial step in clustering objects is choosing the right distance function. In
our setting, we have to cope with the fact that phases are of varying length.
Furthermore, we want to identify spatially similar phases. One well known way
to cope with these two desiderata is to use Dynamic Time Warping (DTW) [123].
DTW computes a cost by finding a one-to-many matching between two sequences.
The matching allows for a non-linear warping effect when aligning the two
sequences. Consequently, DTW is able to cope with minor mismatches between
sequences, such as delays or shifts. A drawback to DTW is that it is not a
distance function as it does not satisfy the triangle inequality.

The most natural way to explain and compute the DTW cost is via dynamic
programming. In our case, given a phase P of length m and a phase P ′ of
length n, the DTW cost can be computed as:

Ci,j = δ(Pi, P
′
j) + min{Ci−1,j−1, Ci,j−1, Ci−1,j} (6.1)



APPROACH 87

where C is the m× n cost matrix and δ(·, ·) computes the cost of aligning the
ith event of P with the jth event of P ′ as:

δ(Pi, P
′
j) =

√
(Pi,x − P ′j,x)2 + (Pi,y − P ′j,y)2 (6.2)

where Pi,x (P ′j,x) and Pi,y (P ′j,y) denote the x and y coordinates of the ith

(jth) event in P (P ′). That is, the cost function is only considering the spatial
proximity of the events in two phases. The final DTW cost between the two
phases P and P ′ is then given by Cm,n.

In earlier work [175], Van Haaren et al. clustered the phases based on their
possession maps. A possession map is a grid overlaying the field that shows
how often each area of the field was occupied by the players and the ball during
a phase. Using DTW as a distance measure has two benefits over this earlier
work: DTW is simpler and, unlike the possession map, it reasons about the
sequential aspect of the phase.

6.2.3 Ranking Clusters

Next, we rank clusters according to their expected relevance to the user.
Typically, the quality of clusters is judged by statistics such as average
pairwise distance, maximal pairwise distance and minimal pairwise distance [57].
However, these evaluation functions are less likely to be relevant to a domain
expert [177]. A soccer coach might be most interested in a cluster with phases
that frequently lead to shots and goals. An opponent might be most interested
in the clusters with the most phases, in order to identify and anticipate the
most frequent patterns of play. Finally, a journalist might be interested in the
clusters with the longest phases, as those can be the most interesting for sports
fans. In this chapter, we went with the viewpoint of a soccer coach and rank
clusters based on the number of shots that they contain.

6.2.4 Mining Patterns

The fourth step involves identifying frequent sequential patterns, that is, time-
ordered sequences of events, within each cluster. One approach to mining
patterns is applying techniques from inductive logic programming, which allows
us to search for a rich set of patterns [174]. However, these techniques currently
do not scale well to a large volume of data and are thus ill-suited for the event
data analyzed in this chapter. We employ the CM-SPADE pattern miner [66],
which is a more conventional sequential pattern mining algorithm found in
the SPMF toolbox [67]. This pattern miner is more restrictive in the type of
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learned patterns, but offers better scalability in terms of speed and memory.
An important benefit of our approach is that our choice of pattern miner
can be easily swapped for an alternative pattern miner such as GSP [163],
PrefixSpan [131], etc.

Typically, sequential pattern miners take as input sequences, where each element
in the sequence is an itemset (i.e., unordered set). An event contains a lot of
information, and the key representational challenge is how to convert an event
into an itemset. Deciding on an itemset representation requires considering two
key questions:

Q1: What information to consider? For example, an end-user may care
about knowing which players often play together, in which case the
players involved in each event are important. However, teams rotate
players between games, players may change positions during a game,
and players are substituted within a game. Thus, some users may be
interested in abstracting away from the specific players involved when
considering a team’s tactics. In this case, omitting the players’ names
from the representation is desirable.

Q2: How to encode the information? Each piece of information contained
in an event could be represented in a multitude of different ways. For
example, a player’s position and the type of pass could be encoded
hierarchically. The location could be represented as an exact position or
as occurring in a specified zone of the pitch, and furthermore the zones
could be organized hierarchically.

When thinking about how to encode the various components of an event, we
pay special attention to two aspects of an event: its location and its type. Both
aspects require some engineering to obtain good results.

Most pattern mining algorithms are designed to work with discrete data or to
convert continuous attributes to discrete ones using a threshold (e.g., checking
if the value is less than a threshold). The x and y coordinates of an event
are real values, so we discretize the location. Rather than using a standard
discretization method such as a grid [175], we divide the soccer pitch in zones
based on domain knowledge as shown in Figure 6.3.

As mentioned in Section 6.1, shots and passes require some special care as they
are important events and each one has multiple different types. For passes, we
augment the itemset by adding any special type of pass as an extra event that is
happening simultaneously. We treat shots in an analogous manner. Effectively,
this introduces an extensional hierarchy in the data where an itemset can match
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Figure 6.3: The zones used to discretize (x, y)-locations on the pitch.

Table 6.2: Sequence representation for the phase in Figure 6.1

1. An interception AT the right flank
2. A ball recovery AT the right flank
3. A pass FROM the right flank TO the right flank
4. A pass FROM the right flank TO the midfield
5. A pass FROM the midfield TO the midfield
6. A pass OR long ball FROM the midfield TO the box
7. A pass FROM the box TO the box
8. A shot OR attempt saved AT the box

on either the more generic event (e.g., a pass) or the more specific event (e.g., a
through ball).

We want our patterns to be as readable as possible to a domain expert, therefore
we encode them in natural language format. An event of type A at location X
is encoded as [A] AT [X], while an event of type B that moves the ball from
location Y to location Z is encoded as [B] FROM [Y] TO [Z]. Table 6.2 shows
the sequence that corresponds to the phase in Figure 6.1.

Using the discussed processing of locations and events, we consider the following
five ways to represent an event as an itemset:

Location. This representation only considers the location of the event as
determined by the zone in which it occurred.
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Event Type. This representation only considers the type of the event, with
the extra processing for passes and shots.

Player. This representation only considers players. Conceptually, each player
is represented by a binary variable which takes on a value of 1 if the player
participates in the event and 0 otherwise.

Location and Event Type. This representation constructs an itemset by
combining (i.e., concatenating) the Location and Event Type representa-
tions.

Location, Event Type, and Players. This representation constructs an
itemset by combining (i.e., concatenating) the Location, Event Type
and Player representations.

Our primary evaluation will focus on the fourth representation and consider
Locations and Event Types. The evaluation will explore how each of the
representations affects the found patterns.

6.2.5 Ranking Patterns

Finally, we rank the discovered frequent sequential patterns with respect to
their expected relevance to a user. Typically, frequent patterns are ranked
according to their support in the data. However, this evaluation function is less
relevant to soccer coaches. Given that most of the action during a soccer match
typically happens in the middle of the pitch and that 90% of all events are
passes, the top of the ranking is likely to be dominated by patterns describing
passing sequences in the midfield.

We propose an alternative evaluation function that considers the types of the
events appearing in a pattern, the length of the pattern and the pattern’s
support to determine its relevance. More specifically, we first assign a weight to
each event type. Higher weights indicate higher relevance. This approach allows
the user to define a bias towards a particular type of patterns. Specifically, we
use a ranking function of the form:

Score(FS) = Supp(FS) ·
∑

et∈ET

λet ·#et ∈ FS

where FS is a frequent sequence, Supp(SP ) is the support count of the sequential
pattern FS, λet is the weight assigned to event type et, and #et ∈ FS is the
number of occurrences of event type et in SP . Given that we are mostly
interested in goal attempts, we assign a high weight (λshot = 2) to shots,
a low weight to normal passes (λpass = 0.5), and average weights (∀et ∈
ET \ {shot, pass} : λet = 1) to all other types of events in our experiments.
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6.3 Experimental Study

Our empirical evaluation on the dataset presented in Section 6.1 addresses the
following four research questions:

Q1: Do we discover interesting and relevant patterns?

Q2: Can we characterize the tactics of teams?

Q3: What is the effect of the clustering step?

Q4: What is the best representation for phases?

The first two questions focus on evaluating the quality of our results, whereas
the last two questions focus on assessing the impact of our design decisions on
the overall results. Next, we discuss the methodology and present the results.

6.3.1 Methodology

The analysis is performed on a team-by-team basis. That is, all 38 league
matches for a given team are used as input to the algorithm. The discussion
will focus on the found patterns for Manchester City, Arsenal, and Leicester
City. These patterns were evaluated qualitatively by a domain expert, as we do
not have access to any ground truth data we can compare our patterns against.
Tactics are often kept confidential by soccer clubs, so getting this ground truth
data is nearly impossible.

We focus our attention on the top 10 clusters as ranked by the number of shots
the cluster contains. We employ the CM-SPADE algorithm [66] in the SPMF
toolbox [67] to discover frequent maximal sequential patterns in each cluster.
We used a support threshold of 10, and then rank the found patterns according
to our score metric. As a default, we consider 100 clusters and use the Location
and Event Type itemset representation. For Q3, we consider 1, 10, 100, and
500 clusters. For Q4, we consider all five ways to convert an event into an
itemset discussed in Subsection 6.2.4.

All experiments were run on a desktop with an Intel i7-6700 3.40GHz processor
with four cores, each having two CPUs. The machine had 32 GB of memory.
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6.3.2 Discovering Interesting and Relevant Patterns

Figure 6.4 shows the top 12 ranked clusters for Manchester City. The phases
that appear within the same cluster exhibit a reasonable degree of spatial
coherence. There are identifiable commonalities, such as that the top-right
and top-middle clusters contain phases beginning in the opposition’s right and
left flank. Figure 6.5 shows a zoomed in version of the top-ranked cluster. In
this cluster, several patterns were found that show a clear attacking pattern
starting from the right flank. These involve actions such as passes followed by
a cross, attacks from a corner, and set pieces. Similar patterns were found in
the second-ranked cluster.

Figure 6.6 shows the fourth-ranked cluster, which is also interesting. The
highest-ranked pattern in this cluster involved a ball recovery on the right flank,
followed by a pass to the midfield, followed by a pass to the left flank. As seen
from the cluster, this pattern is capturing a diagonal movement of the ball from
the right side of Manchester city’s own half to left side of their opponent’s half.
In the 2015/16 season, Mauricio Pellegrini commonly employed a formation
that aligned Kevin De Bruyne on the right, David Silva in a central role, and
Raheem Sterling on the left in support of striker Sergio Agüero. De Bruyne
recovers many balls, especially for someone in that role. Sterling is very fast,
and hence offers an outlet on the left side for a possible attack.

6.3.3 Identifying Team Tactics

To answer Q2, we compare the patterns found for three different teams: Arsenal,
Leicester City, and Manchester City. We discuss this from both a quantitative
and a qualitative perspective.

From a more quantitative perspective, Arsenal had 3,884 phases in the season
containing three or more events and 480 shots occurred in these phases. Leicester
City had 4,099 phases in the season containing three or more events and 439
shots occurred in these phases. Manchester City had 3,828 phases in the season
containing three or more events and 512 shots occurred in these phases. The
number of phases for Arsenal and Manchester City are very similar whereas
Leicester has slightly more. One possible explanation could be that Leicester
City matches typically involved a lot of duelling in midfield, which can lead
to more possession changes. Additionally, Leicester generated around 10%
fewer shots than Arsenal, and Arsenal generated about 6.5% fewer shots than
Manchester City.

Table 6.6 gives the number of phases (P), number of shots (S), and the number
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Figure 6.4: All phases assigned to each of the top 12 clusters for Manchester City.
The red dots indicate where the phase begins. Manchester City is attacking
to the right. The top-ranked cluster is in the upper left hand corner, and the
clusters are ordered from left to right.
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Figure 6.5: All phases assigned to the top-ranked cluster for Manchester City.
The red dots indicate where the phase begins. Manchester City is attacking to
the right. This shows a clear attacking pattern starting from the right flank.

Figure 6.6: All phases assigned to the fourth-ranked cluster for Manchester City.
The red dots indicate where the phase begins. Manchester City is attacking to
the right.

of frequent sequential patterns (FS) contained within each of the top 10 ranked
clusters for each team. 59.2% of Leicester City’s shots occur in the top 10 clusters,
with 16.5% appearing in the top cluster. In contrast, 54.1% of Manchester
City’s shots occur in the top 10 clusters with 12.5% in the top cluster. For
Arsenal, only 50.4% of the shots occur in the top 10 clusters and 9.4% in the
top cluster.

For Arsenal, Figure 6.7 shows the phases assigned to each of the top 12 clusters.
Arsenal’s play exhibits spatial diversity in how attacks are generated. Like most
teams, the top two clusters capture attacks from either flanks (e.g., from corners
or crosses). However, the clusters ranked 3 through 5 all capture various phases
that start near Arsenal’s own goal line, with a large number originating from
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Figure 6.7: All phases assigned to each of the top 12 clusters for Arsenal. The
red dots indicate where the phase begins. Arsenal is attacking to the right.The
top-ranked cluster is in the upper left hand corner, and the clusters are ordered
from left to right.

goal kicks. These account for 65 shots. Their play involves long sequences of
passing the ball around, with lots of action through the midfield. Table 6.3
shows the top-ranked frequent sequences within three clusters for Arsenal.

For Leicester City, Figure 6.8 shows the phases assigned to each of the top 12
clusters. Leicester City’s top two clusters capture attacks from the right or left
flank. However, Leicester generates many more shots (71) from the left flank
than the right flank (46) whereas other teams are more balanced. The fact that
Leicester was more prolific from the left is a bit surprising, as Riyad Mahrez,
who won one of the player of the year awards and had a large number of goals
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Table 6.3: The top-ranked frequent sequences found in the second, third, and
ninth ranked clusters for Arsenal.

Cluster Sequential Pattern

2nd Cluster 1. A pass OR cross FROM the left flank TO the box
2. A shot

3rd Cluster
1. A pass FROM the midfield TO the midfield
2. A pass FROM the midfield TO the midfield
3. A pass FROM the midfield TO the midfield

9th Cluster

1. A pass FROM the midfield TO the midfield
2. A pass FROM the midfield TO the left-flank
3. A pass FROM the left flank TO the midfield
4. A pass FROM the midfield TO the midfield
5. A pass FROM the midfield TO the midfield

Table 6.4: The top-ranked frequent sequences found in the first, second, and
seventh ranked clusters for Leicester City.

Cluster Sequential Pattern

1st Cluster 1. A pass OR cross FROM the left flank TO the box
2. A shot

2nd Cluster
1. A pass OR cross FROM the right flank TO the box
2. A shot AND a Miss
3. Ball goes out of bounds

7th Cluster 1. A ball recovery IN the midfield
2. A shot

(14 from open play) and assists (11), operated on the right. Unlike Arsenal,
Leicester City has very few sequences in the top 10 clusters that start with a
goal kick. Additionally, Leicester has four clusters where most phases start in
the opponent’s half of the midfield, and these generate 64 shots. This indicates
a direct, counter-attacking style with shorter sequences. Table 6.3 shows the
top-ranked frequent sequences within three clusters for Leicester City.

Manchester City generates a lot of shots from phases that start on the left or
right flank, and the distribution is nearly even with 64 coming from the right
and 56 from the left. More generally, Manchester City’s style falls somewhere
in between Arsenal and Leicester City. On the one hand, there are several
clusters with phases starting near midfield that are short and direct. On the
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Figure 6.8: All phases assigned to each of the top 12 clusters for Leicester City.
The red dots indicate where the phase begins. Leicester City is attacking to the
right. The top-ranked cluster is in the upper left hand corner, and the clusters
are ordered from left to right.
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other hand, like Arsenal, there are some clusters that show groups of phases
starting in Manchester City’s half of the field between the penalty box and
midfield. However, there are fewer phases initiated with a goal kick. Table 6.5
shows the top-ranked frequent sequences within three clusters for Manchester
City.

Table 6.5: The top-ranked frequent sequences found in the first, third, and
seventh ranked clusters for Manchester City.

Cluster Sequential Pattern

1st Cluster 1. A pass OR cross OR corner FROM the right flank TO the box
2. A shot

3rd Cluster
1. A pass FROM the left flank TO the left flank
2. A pass FROM the left flank TO the midfield
3. A pass FROM the midfield TO the right flank

7th Cluster 1. A ball recovery IN the left flank
2. A pass FROM the left flank TO the midfield

Table 6.6: A comparison of the clusterings found for Arsenal, Leicester City
and Manchester City. The clusters are sorted by the number of shots each one
contains and focuses on the 10 clusters that contain the most shots. Within
each cluster, the number of phases (P), number of shots (S), and the number of
frequent sequential patterns (FS) are shown.

Cluster Arsenal Leicester City Manchester City
Number P S FS P S FS P S FS

1 78 45 143 109 71 227 103 64 141
2 110 44 159 76 46 134 116 56 127
3 46 24 47 55 26 11 63 28 82
4 34 21 20 94 22 34 60 22 72
5 55 20 187 33 20 17 33 21 19
6 83 20 26 32 18 7 50 20 27
7 41 20 40 27 18 13 73 19 165
8 49 17 150 37 12 12 49 18 10
9 42 17 116 50 12 16 44 15 12

10 51 14 40 55 10 41 63 14 18
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6.3.4 The Effect of the Clustering Step

To answer Q3, we compare 1 cluster (i.e., no clustering), versus 10, 100, and 500
clusters. We focus the analysis on Manchester City. Table 6.7 provides statistics
on the number of phases (P), number of shots (S), and the number of frequent
sequential patterns (FS) contained within each of the top 10 ranked clusters
when considering 10, 100, and 500 clusters. From a quantitative standpoint,
considering only 10 clusters resulted in 225,118 frequent sequences which is
substantially more than for 100 clusters (4,557) or 500 clusters (676). When
looking at 100 clusters, 54.1% of all shots appear in the top 10 clusters, and for
500 clusters this number drops to 30.5%.

When performing no clustering, essentially all found patterns involve passing
patterns of differing length within the midfield, with an occasional pass to one
of the flanks. There are no patterns involving shots or the box in the top 100
ranked frequent sequences.

When clustering into 10 clusters, seven of the clusters generate patterns that
contain almost only passes within midfield. There is one cluster for attacks
from the right flank and one from the left. Finally, one cluster contains phases
starting near Manchester City’s own box. Hence there is little diversity in the
found patterns.

Figure 6.9 shows the top 12 ranked clusters when the phases are clustered into
500 clusters. The clusters are typically very spatially coherent, but contain
very few phases. This makes it difficult to find interesting patterns that have
enough support in the data. Consequently, looking at 100 clusters seems to be
a good tradeoff between diversity, spatial coherence, and sufficient data to find
patterns with the desired support.

6.3.5 The Best Phase Representation for Mining Patterns

Next, we consider the effect of the five different ways to convert an event into
an itemset representation. We focus on the top 10 ranked patterns within each
of the top 10 clusters. The two approaches (location and event type; player,
location, and event type) that include multiple pieces of information result in
very similar patterns. In both cases, around two thirds of the patterns are
length one or two and one third are length three or greater. A drawback to
including the player information is that it greatly expands the search space of
possible patterns that need to be considered.

Only considering one aspect of an event in the itemset representation is quite
limiting. Particularly, for just the location or just the event type, the patterns
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Figure 6.9: All phases assigned to each of the top 12 clusters from Manchester
City when considering 500 clusters. The red dots indicate where the phase
begins. Manchester City is attacking to the right.
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Table 6.7: The effect of the number of clusters with three cluster sizes considered:
10, 100, and 500. The clusters are sorted by the number of shots each one
contains and focuses on the 10 clusters that contain the most shots. Within
each cluster, the number of phases (P), number of shots (S), and the number of
frequent sequential patterns (FS) are shown.

Cluster 10 Clusters 100 Clusters 500 Clusters
Number P S FS P S FS P S FS

1 424 108 488 103 64 141 57 43 86
2 353 89 314 116 56 127 45 27 88
3 344 85 77,699 63 28 82 25 16 8
4 539 56 6,812 60 22 72 20 13 12
5 144 47 136,212 33 21 19 25 13 3
6 305 46 1,702 50 20 27 17 10 3
7 199 46 908 73 19 165 15 9 3
8 355 35 353 49 18 10 17 9 0
9 763 0 520 44 15 12 14 8 1

10 402 0 110 63 14 18 13 8 0

contain little context about what is happening. For just location or just event
type, it is possible to find quite long sequences. For locations, it is common to
find sequences of length five, with the longest being of length eight. For event
type, sequences of up to length 13 are found. When considering just players,
most patterns are very short, most are length one or two, and nothing longer
than length three. A common finding is a pattern where the same player is
involved in multiple consecutive events. These most likely indicate a dribbling
sequence followed by a pass. But again, more context is needed to obtain a
good understanding.

6.4 Related Work

This chapter falls within the emerging area of work that looks at analyzing spatio-
temporal sports data. Knauf et al. [96, 97] proposed a novel spatio-temporal
kernel for clustering player trajectory data. Their kernel is able to consider
multiple different trajectories simultaneously, which is important for capturing
tactics. Furthermore, it is based on the solid theoretical foundations of kernels.
In several context-specific scenarios, such as play initiation and attacks, the
approach identified interesting clusters that are illustrative of differences between
two team’s playing styles. Another trajectory-based approach, which focuses
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on scoring opportunities [62], clusters together different scoring opportunities
based on hand-crafted features as well as trajectory information about players
on both teams. The goal is to assess how effective a team is at creating
chances from certain types of situations (e.g., corners). Another approach to
characterizing scoring chances is based on inductive logic programming [174],
which allows representing rich, relational structure in a domain. This work
focuses on discriminative mining of event streams to find patterns of play that
are more likely than not to lead to shots on goal, but primarily focuses on
capturing (hierarchical) spatial relations. Van Haaren et al. [173] used a similar
approach in volleyball to detect patterns of play that occur frequently in won
rallies.

Another way to analyze tactics is to build occupancy maps based on ball
movements [109]. The occupancy maps are then used to assess how predictable
the ball’s movement is within a given region of the field. While the approach
does provide a characterization of team behavior, it does not yield insights into
specific trajectories or patterns of movement that a team employs to generate
attacks. Another line of work looks at trying to characterize playing style
and tactics by looking at passing patterns. One approach is to look at the
passing graph and look for common passing sequences, that is, sequences of a
given length that involve mostly the same players passing in mostly the same
order [83]. However, it ignores the spatial component. Another approach looks
at identifying frequent passing patterns by applying dynamic time warping [81].
Beyond these, other analyses of tactics include recognizing team formations in
soccer (e.g., [15]) or identifying specific plays in American football (e.g., [167]).

In terms of data mining tasks, related areas include trajectory mining [73] and
finding frequent spatio-temporal patterns [29]. In contrast to trajectory mining,
the transition time between different events is not as important in our case.
Both of these approaches also take the typical pattern mining approach of
focusing on identifying frequent patterns. For example, a team’s defenders may
pass the ball among themselves, simply because they are trying to kill time.
While this would result in a frequent pattern that represents a tactic (“kill
time”), it does not provide significant insight into the more important strategic
decisions such as how does a team build up the attack. Furthermore, frequency
also ignores the fact that certain sequences are inherently more interesting. In
soccer, events like goals, shots, and getting the ball in a dangerous area are very
infrequent, but incredibly important. Hence, it is natural to assign more or
less weight to a sequence based on how interesting and valuable the individual
events within the pattern are. Importantly, spatio-temporal patterns in sports
are not the result of a single object moving around. Instead, they arise from a
complex, dynamic environment where many factors such as interactions among
multiple different players across space and time, and features of the game state
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(e.g., score, field position, time left, and team quality) influence decision making
and tactics. Our approach is able to account for some of these factors.

6.5 Conclusions

Advanced data collection techniques are becoming more and more commonplace
in sports and they generate rich, complex spatio-temporal data. Automatically
analyzing team tactics from these data is an interesting and challenging problem.
This chapter tackled one aspect of this task by trying to automatically discover
interesting attacking tactics from event data collected from professional soccer
matches. We proposed a five-step pipeline to analyze such data. An analysis of
the 2015/16 English Premier League season identified several differences in style
of play between different teams. It also identified some relevant, reoccurring
patterns of play.

There are several important directions for future work. One is to continue to
tackle the representational issues associated with performing pattern mining in
a mixed discrete and continuous space. In conjunction with this, the ability to
generalize to nearly identical commonly occurring sequences could also allow
finding additional interesting patterns. Another direction is evaluating whether
our results are consistent over time, i.e., if the tactics inferred for a given team
after a set of matches, carry over to a subsequent set of matches. Finally, it
would be interesting and much more informative to have full optical-tracking
data for all players and the ball. However, tackling such a setting would require
radically different techniques.





Chapter 7

Player Vectors:
Characterizing Playing Style
of Soccer Players

In this chapter, we attempt to characterize a player’s playing style in an objective
and data-driven manner based on analyzing event stream or play-by-play match
data. While playing style is a somewhat subjective concept, our working
definition is that playing style manifests itself as where on the pitch a player
tends to perform specific actions with the ball. Our goal is to summarize this
playing style in a fixed-length player vector. Characterizing playing style from
event stream data is challenging as we have to reason about spatial locations,
discrete actions, and a variable number of events. We cope with these challenges
by overlaying a grid on the pitch and counting how often each player performs
a specific action in a given location. Then, to reduce the dimensionality we
perform non-negative matrix factorization. We repeat this for several types of
actions. Finally, we concatenate together a player’s compressed vectors for each
action type to construct his player vector. To evaluate the quality of our player
vectors, we propose a retrieval task. Given anonymous event data for a player,
we show that we can accurately predict the player’s true identify. Moreover, we
show how to interpret player vectors and present several qualitative use-cases
related to scouting and monitoring player development.

The content of this chapter is based on the following publication [44]:

Decroos, T., and Davis, J. Player Vectors: Characterizing Soccer Players’
Playing Style from Match Event Streams. In Joint European Conference on

105
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Machine Learning and Knowledge Discovery in Databases (2019), Springer

7.1 Applications of Playing Style at Soccer Clubs

Characterizing playing style can contribute to the following three processes at
soccer clubs.

Scouting Soccer clubs can search the market more intelligently if they know
the type of player they are looking for and how well prospective targets
match that type. Transfers are expensive, and clubs are always looking
for bargains and ways to mitigate risks in player recruitment.

Monitoring player development The coach can inspect the playing style
of a player in a human-interpretable player vector. If the player vector
matches the expectations of the coach, then the coach can monitor that
this player vector remains stable and unchanged. If the player vector does
not match the expectations of the coach, then he can give his player some
pointers and afterwards monitor how well the player is implementing the
advice.

Match preparation Understanding the playing style of your opponent can
offer certain tactical advantages. The defenders of a team will wish to
know what type of attackers they are up against. Similarly, the attackers
will be interested in the playing style of the defenders they need to score
against.

7.2 How to Define and Evaluate Playing Style

Characterizing a soccer player’s playing style requires reaching a consensus on
what constitutes a playing style. While this is an inherently subjective concept,
our hypothesis is that a player’s playing style arises from the interplay between
his skills and the tactics employed by the team. Hence, a style of play will
manifest itself in the player’s behavior during the game.

Definition 2 (Playing style). A player’s playing style can be characterized
by his preferred area(s) on the field to occupy and which actions he tends to
perform in each of these locations.

In our work, we also make the following two assumptions.
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Assumption 1: Most players exhibit differences in playing style and can be
differentiated on this. While it is possible that two players exhibit such a
similar playing style that they cannot be discerned from each other, this
is not the case for most pairs of players.

Assumption 2: A player’s playing style will not drastically change in a short
period of time. That is, in a sequence of consecutive games in a season,
each player will exhibit the same playing style. This seems justifiable for
two reasons. First, while players’ skills and playing style evolve over the
course of their career, these changes occur gradually rather than abruptly.
Second, while the tenure of managers, who influence tactics, do not tend
to be overly long in professional soccer, the majority of teams in a league
do not change manager mid-season.

Based on this definition and these assumptions, any system that successfully
characterizes playing style from match event stream data can be used to retrieve
players from anonymized event stream data. This player retrieval task can be
more formally defined as follows:

Given: Anonymized event stream data describing actions of player p

Retrieve: The identity of player p

The quality of a system that characterizes playing style can be evaluated by
its performance on this player retrieval task, as this task measures how well a
system can recognize players and differentiate between them purely based on
their actions on the field.

In the next section, we describe our system for solving this task. In addition
to characterizing each player’s playing style, our system also allows human
analysts to interpret our representation of playing style and to automatically
compare players’ playing style on their similarity.

7.3 Building Player Vectors

In this section we address the following task:

Given: Event stream data describing actions of player p.

Build: A fixed-size player vector that characterizes player p’s playing style and
can be interpreted both by human analysts and machine learning systems.
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At a high-level, our approach works as follows. First, we select relevant action
types for characterizing playing style.

Second, for each player p and relevant action type t, we overlay a grid on the
field and count how many times player p performed action t in each grid cell.
This transform helps address some of the challenges listed in Chapter 3 because
it (1) captures the spatial component, (2) fuses discrete (action type) with
continuous (location) features in a unified representation, and (3) converts a
variable length set of actions into a fixed size. We end up with one matrix per
player per action type.

Third, we reshape each matrix into a vector and group it together with all other
vectors of the same action type to form new, bigger matrices per action type
detailing the playing styles of all players for that specific action type. We then
perform non-negative matrix factorization (NMF) to reduce the dimensionality
of these matrices. NMF automatically clusters together similar grid cells into
a coherent group, which is more informative and intuitive (e.g., for scouting)
than looking at individual grid cells where a player operates.

Finally, we construct a player vector for each player by concatenating his
compressed vectors of each action type. We also show how to compute the
similarity of player vectors (to be used in machine learning algorithms such as
clustering and nearest neighbors).

7.3.1 Selecting Relevant Action Types

Our hypothesis is that the type and location of the actions a player performs
are informative of that player’s playing style. Our event stream data contains
19 different types of actions. However, we only consider offensive actions that
are performed during open play for two reasons.

First, defense is primarily about positioning, and often this involves picking
a position to prevent certain actions from occuring. Hence, by definition,
characterizing defensive style requires off-the-ball location data, which we do
not have access to. Furthermore, most on-the-ball defensive actions (e.g. tackles,
clearances) are usually performed out of necessity rather than because they
are indicative of a player’s playing style. One effect of this criterion is that all
keeper-specific actions are automatically ignored.

Second, the open play criteria means we exclude set piece actions (e.g., free-kicks
and throw-ins) from our analysis. Teams typically have set-piece specialists
(e.g., for free kicks). Similarly, actions like throw-ins are often performed by a
pre-defined position (e.g., fullbacks or wingers), so this is more an artefact of
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Table 7.1: Each action type must fit two criteria to be considered relevant for
characterizing playing style: it must be offensive and it must occur during open
play. The relevant action type are passes, dribbles, crosses, and shots.

Action type Frequency Offensive Open play
pass 53.1% X X
dribble 25.2% X X
clearance 3.8% X
throw_in 2.8% X
interception 2.6% X
tackle 2.3% X
cross 1.8% X X
shot 1.5% X X
bad_touch 1.4% X
foul 1.3% X
freekick_short 1.3% X
keeper_pick_up 0.8% X
keeper_save 0.8% X
corner_crossed 0.6% X
freekick_crossed 0.2% X
keeper_claim 0.2% X
corner_short 0.1% X
shot_freekick 0.1% X
keeper_punch 0.1% X

position than style. While we believe analyzing set pieces is extremely interesting
and important, a proper study of these actions would require a different type of
analysis than we perform in this chapter.

When applying these two criteria, the remaining relevant action types are passes,
dribbles, crosses, and shots (Table 7.1).

7.3.2 Constructing Heatmaps

A heatmap is a summary of the locations where player p performs actions of
type t. For each player and action type, we execute the following three steps.

1) Counting We overlay a grid of size m × n on the soccer field. Next, we
select all of player p’s actions of type t in our data set. Per grid cell Xij ,
we count the number of actions that started in that cell. Hence, we have
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(a) The raw shot heatmap
obtained by overlaying a
grid and counting shot
locations

(b) The smoothed shot
heatmap obtained after
normalizing and smooth-
ing the raw shot heatmap.

(c) The same shot
heatmap reconstructed
from a length-4 feature
vector.

Figure 7.1: Example of a heatmap detailing the shot playing style of Riyad
Mahrez, winger at Leicester City in the 2016/2017 season.

transformed a variable-size set of actions to a fixed-size matrix X ∈ Nm×n

containing the raw counts per cell.

2) Normalizing Two players p1 and p2 can have an identical playing style,
but if player p1 played more minutes than player p2, then player p1’s
matrix X will contain higher raw counts than the matrix of player p2. To
combat this, we normalize X such that each cell contains its count if p
had played 90 minutes (1 game). For example, if player p played 1600
minutes in total in our data set, then we construct the normalized matrix
X ′ = 90

1600X.

3) Smoothing We would expect some spatial coherence, or smoothness, in
the locations where the actions were performed. However, this coherence
can be disrupted by laying a high granularity grid (i.e., high values for
parameters m and n) over the pitch as the boundaries between grid cells
are abrupt and somewhat arbitrary. Hence, the counts for nearby cells
may exhibit more variance than they should. To promote smoothness in
the counts of nearby cells, a Gaussian blur is applied to matrix X ′. A
Gaussian blur is a standard image processing technique [155] that involves
convolving X ′ with a Gaussian function. Specifically, the value of each
cell in X ′ is replaced by a weighted average of itself and its neighborhood,
leading to the blurred matrix X ′′ ∈ Rm×n

+ .

X ′′ is the heatmap detailing where player p performs actions of type t (Figure
7.1). For some action types, e.g., passes, we are not just interested in their
start locations, but also in their end locations. For these action types, we
construct separate heatmaps X ′′start and X ′′end using respectively the start and
end locations of the actions in the counting step.
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7.3.3 Compressing Heatmaps to Vectors

The goal is to capture the information available in a heatmap (i.e., the locations
where a player p performs actions of type t) in a small vector. We detail our
approach for compressing heatmaps to vectors per action type t.

First, we reshape each heatmap X ′′ to a 1-dimensional vector x of length mn.
In the case of action types where we are interested in both the start and end
location, we reshape the heatmaps X ′′start and X ′′end to vectors x′start and x′end

and concatenate them in a single 1-dimensional vector x of length 2mn. More
generally, let s = 1 if we are only interested in the start location of an action
type and s = 2 if we are interested in both the start and end location of an
action type. The length of x is then smn.

We then construct the matrix V = [x0x1 . . . xl] that contains as columns the
reshaped heatmaps of all l players in our data set for action type t. Next, we
compress matrix V by applying non-negative matrix factorization (NMF) [102],
which is a form of principal component analysis where the resulting components
contain only positive numbers. This results in two matrices W and H such that:

V ≈WH, (7.1)

where V ∈ Rsmn×l
+ , W ∈ Rsmn×k

+ and H ∈ Rk×l
+ . Here, k is a user-defined

parameter that refers to the number of principal components for action type t.

The columns of W are the principal components that represent basic spatial
groups of action type t. These principal components can be visualized as
heatmaps (Figure 7.2). The rows of H are the small vectors that are the
compressed versions of the heatmaps in V . In other words, if the reshaped
heatmap x was the i-th column in matrix V , then the i-th row of H is its
compressed vector. Each compressed vector can be visualized by multiplying it
with the principal component matrix W . The result of this multiplication is a
heatmap similar to the original, but reconstructed from only k features (Figure
7.1). In addition, each feature in a compressed vector is interpretable in the
sense that its numeric value quantifies how often the player executes actions of
type t with locations in the spatial group of a specific principal component.

7.3.4 Assembling Player Vectors

The player vector v of a player p is the concatenation of his compressed vectors
for the relevant action types: passes, dribbles, crosses, and shots. The total
length of a player vector v is equal to kpass + kdribble + kcross + kshot where kt

is the number of principal components chosen to compress heatmaps of action
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type t. In this chapter, we set kt as the minimal number of components needed
to explain 70% of the variance in the heatmaps of action type t. This parameter
setting was empirically found to work well because of the high variability of
players’ positions in their actions (Challenge 2 in Section 3.4). Ignoring 30%
of the variance allows us to summarize a player’s playing style only by his
dominant regions on the field rather than model every position on the field he
ever occupied. This design choice lead us to use 4 shot components, 4 cross
components, 5 dribble components, and 5 pass components, adding up to form
length-18 player vectors.

We can now quantify two player’s playing style similarity by computing the
Manhattan distance between their player vectors. Manhattan distance works
well because the value of each feature in each player vector is a meaningful
quantity. The Manhattan distance does not alter this meaning and simply
computes the sum of the absolute differences per feature, unlike Euclidean
distance which tends to unfairly penalize large differences in a few features. We
also empirically confirm that the Manhattan distance works best in Section
7.4.4.

7.4 Experiments

Evaluating our method is challenging as no objective ground truth exists for
characterizing playing style. Therefore our experiments address three main
questions: (1) providing intuitions into what information our player vectors
capture, (2) demonstrating how our approach could be used for scouting and
monitoring player development by substantiating a number of claims in popular
media about professional soccer players, and (3) measuring our performance at
the player retrieval task, which we argue in Section 7.2 is an effective proxy for
how well our approach characterizes playing style.

Our data set consists of Opta event stream data from 9155 matches in the
five major soccer competitions in Europe: the English Premier League, the
German Bundesliga, the Spanish Primera Division, the Italian Serie A and the
French Ligue Un. Our data spans almost all matches between the 2012/2013
and 2016/2017 seasons. Our match event stream data is encoded in the SPADL
format (Chapter 3).
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(1) Far shot (2) Close shot (3) Right shot (4) Right shot

(5) L. flank cross (6) L. backline cross (7) R. flank cross (8) R. flank cross

(9) L. back dribble (10) L. flank dribble (11) R. back dribble (12) R. flank dribble

(13) Center dribble (14) Center pass

(15) Left back to flank pass (16) Left flank pass

(17) Right back to flank pass (18) Right flank pass

Figure 7.2: The 18 components of our player vectors constructed by compressing
heatmaps of shots (1-4), crosses (5-8), dribbles (9-13), and passes (14-18) with
non-negative matrix factorization.
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7.4.1 Intuition

Figure 7.2 illustrates all 18 components (4 shots, 4 crosses, 5 dribbles, 5 passes)
corresponding to the weights in our length-18 player vectors. The shot, cross,
and dribble components only describe where groups of actions start, while the
pass components descibe where groups of passes start and end. This is because
the end locations of shots, crosses, and dribbles are not informative of a player’s
playing style. Shots and crosses all end in roughly the same location, while
dribbles are usually short and vary in direction such that there is no noticeable
difference between their start and end heatmaps.

Figure 7.3 shows the player vectors of four archetypical players in their 2016/2017
season.

Robert Lewandowski: Striker at Bayern Munich. He shows high weights for
three components: C2: Close shot, C13: Center dribble, and C14: Center
pass. These are the actions central strikers are expected to focus on.

Jesus Navas: Winger at Manchester City. He shows high weights for three
components that are typical of an offensive right winger: C8: Right
backline cross, C12: Right flank dribble, C18: Right flank pass.

Kevin De Bruyne Midfielder at Manchester City. De Bruyne’s player vector
seems less pronounced than the others at first glance, but is actually very
informative. First, we can deduce that De Bruyne plays mostly on the
opponent’s half due to the non-existent weights for components C9/C11:
Left/Right back dribble and C15/C17: Left/Right back to flank pass.
Second, his player vector shows similar values for (almost) all mirroring
components (e.g., C16/C18: Left/Right flank pass). The exception is
shots: his weight for C4: Right shot is high, while almost non-existent for
C3: Left shot. De Bruyne’s player vector suggests that he is an offensive
central midfielder with no preference towards the left or the right when it
comes to passing, dribbling or crossing, but attempts to score only from
the right.

Sergio Ramos Defender at Real Madrid. Two of his components stand out:
C9: Left back dribble and C15: Left back to flank pass. While less notable
than his defensive components, Ramos shows an unusually high weight for
C2: Close shot. This is because Ramos often attempts to head the ball
in the goal at corner kicks, as proven by his nine goals in the 2016/2017
season headed in from corner kicks. Ramos is a left-most central defender
with a very defensive playing style, except when it comes to corners.
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(a) Robert Lewandowski, central striker
at Bayern Munich, shows high weights for
C2: Close shot, C13: Center dribble, and
C14: Center pass.

(b) Jesus Navas, right winger at Manch-
ester City, shows high weights for C8:
Right backline cross, C12: Right flank
dribble, and C18: Right flank pass.

(c) Kevin De Bruyne, central offensive
midfielder at Manchester City, shows
high weights for all offensive components,
favoring neither left nor right.

(d) Sergio Ramos, left-most central
defender at Real Madrid, shows high
weights for C9: Left back dribble and C15:
Left back to flank pass.

Figure 7.3: Visualized player vectors for an archetypical (a) striker, (b) winger,
(c) midfielder, and (d) defender in the 2016/2017 season. The boxplots in the
background show the distribution of the weights per component.

Player vectors can characterize playing style in an intuitive manner that can
make sense to domain experts (e.g., scouts and coaches), yet the interpretable
components upon which the player vectors are built are constructed in a
completely data-driven manner.

7.4.2 Scouting

We investigate three claims in popular media about similar players. We
computed and compared player vectors for all 1480 players who played at
least 900 minutes in the 2016/2017 season of the five major soccer competitions
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in Europe. Lionel Messi is regarded by many as the best soccer player in the
world. One player who has been deemed to play similarly to Messi is Paulo
Dybala, a fellow Argentinian attacker [160, 74]. When ranked using our player
vectors, Dybala is the 2nd most similar player (out of 1479) to Lionel Messi.
Idrissa Gueye (midfielder at Everton FC) is often hailed as the new N’golo Kante
(midfielder at Chelsea FC) by many journalists [1, 95, 28]. Gueye is the 2nd

most similar player to Kante in our data set. Aymeric Laporte is a 24-year-old
defender playing for Manchester City FC, who was deemed to be the long-term
replacement for 33-year-old Real Madrid defender Sergio Ramos [138, 38], who
was named best defender in the world in 2017 by UEFA.1 Laporte is the 29th

most similar player to Ramos using our player vectors. While 29th out of
1479 is not bad, this example does illustrate that our approach is better at
characterizing offensive playing style than defensive playing style, as defensive
playing style is often more about positioning than on-the-ball actions (Challenge
6 in Section 3.4).

7.4.3 Monitoring Player Development

Journalists agree that Cristiano Ronaldo (ex-Real Madrid) evolved from his
role as a left winger to a role as a central striker [156, 145]. Our player vectors
capture this transition (Figure 7.4). In the 2012/2013 season, Ronaldo’s most
common shot types were C1: Far shot and C3: Left shot. In the 2016/2017
season however, his shot playing style is completely different with C2: Close
shot as his most common shot type and no significant difference in output
between C3: Left shot and C4: Right shot. Ronaldo also executed fewer crosses,
dribbles and passes in the 2016/2017 season (see the drops in components 5-18),
focusing more on finishing scoring chances than setting them up.

Jordan Henderson is a midfielder at Liverpool. In the 2016/2017 season, coach
Jürgen Klopp instructed Henderson to play more defensively, transitioning his
playing style from a box-to-box midfielder to a defensive midfielder [184, 134].
When comparing Henderson’s 2015/2016 player vector to his 2016/2017 player
vector (Figure 7.4), we notice that his output in terms of passes and dribbles
(components 9-18) has significantly increased, while his output in terms of shots
and crosses has completely disappeared (components 1-8).

1http://www.uefa.com/insideuefa/awards/previous-winners/newsid=2495000.html

http://www.uefa.com/insideuefa/awards/previous-winners/newsid=2495000.html
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(a) Ronaldo evolved from a left winger in
the 2012/2013 season to a central striker
in the 2016/2017 season. Note the drop
of C1: Far shot and C3: Left shot and
the rise of C2: Close shot and C4: Right
shot.

(b) Henderson transitioned to a more de-
fensive playing style after the 2015/2016
season. Note the almost complete
disappearance of shots and crosses
(components 1-8) and the rise of passes
and dribbles (components 9-18).

Figure 7.4: Player vectors illustrating the development of (a) Cristiano Ronaldo,
former striker at Real Madrid, and (b) Jordan Henderson, midfielder at
Liverpool.
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Table 7.2: Top-k results and mean reciprocal rank (MRR) when trying to
retrieve 741 players from anonymized event stream data of season 2016/2017
using labeled event stream data from season 2015/2016.

Distance function Top-1 Top-3 Top-5 Top-10 MRR
Manhattan distance 38.2% 49.8% 54.9% 64.4% 0.469
Euclidean distance 33.0% 47.0% 52.9% 61.8% 0.429

7.4.4 Player Retrieval from Anonymized Event Stream Data

Our approach has many parameters: (a) the size of the grid to construct the
heatmaps (50× 50), (b) the algorithm to smooth the heatmaps (Gaussian blur),
(c) the algorithm to compress the heatmaps (non-negative matrix factorization),
(d) the number of components to use (4 shots, 4 crosses, 5 dribbles, and 5
passes), and (e) the distance function to compare the player vectors (Manhattan).
Normally we would have no experimental way to tune these parameters as playing
style is a subjective concept with no ground truth. However, as explained in
Section 7.2, we can use player retrieval from anonymized match event stream
data as a proxy for characterizing playing style.

We solve the player retrieval task as follows. First, we construct a set of labeled
player vectors V using a training event stream data set that has not been
anonymized. Second, we obtain a set of anonymous actions performed by a
target player pt and construct a player vector vt based on these actions. Third,
we compare vt to all v ∈ V and construct a rank-ordered list of the most similar
players to pt. The quality of this ranking is then the position of the unknown
player in the ranking. In other words, if most players appear at the top of their
own rankings, then we have successfully characterized playing style. If most
players do not appear near the top of their own rankings, then we have failed.

To illustrate this idea, we provide the results of an experiment to test whether
Manhattan distance or Euclidean distance is the best distance function for
comparing player vectors in Table 7.2. In our experiment, our training data
was labeled event stream data from season 2015/2016 of the five top soccer
competitions in Europe and the test data was anonymized event stream data
from season 2016/2017 of the same competitions. We only considered players
that have played 900 minutes in the same team in both seasons. This left us
with 741 anonymized players in the test data which we de-anonymized using
741 labeled players in the training data.

The Manhattan distance outperforms the Euclidean distance at retrieving
players from anonymized event stream data. We can successfully retrieve 38.2%
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of all players with only one attempt and retrieve 64.4% of all players in the
top-10 of our rankings. Hence, we conclude that Manhattan distance is the
better distance function to use to compare players’ playing style.

7.5 Related Work

Danneels et al. [40] predict a player’s position (i.e., attacker, midfielder, defender)
based on their actions. While similar to our research, our goal and approach is
more broad and ambitious, as our player vectors are much more detailed than
only three distinct labels. Gyarmati et al. [82] construct movement vectors to
characterize a player by his movement on the field. Van Gool et al. [172] analyze
the playing style of teams instead of players. Their approach is different from
ours, but their goal is similar as they also try to capture a subjective concept like
playing style in a more objective and data-driven way. STATS introduced STATS
Playing Styles [64], which are eight different styles (e.g., fast tempo, direct play,
counter attack) teams use to create shooting opportunities. Fernandez et al. [61]
also categorize different styles of play for teams in professional soccer.

In other sports, Franks et al. [69] used spatial information to categorize shots
in professional basketball. In this work, data from the NBA was collected and
analyzed using non-negative matrix factorization (NMF). This paper was a
huge influence on our work, as our approach on soccer event stream data is
largely inspired by their approach on basketball event stream data.

7.6 Conclusion

Objectively characterizing the playing style of professional soccer players has
important applications in scouting, player development monitoring, and match
preparation. We showed how to construct player vectors by transforming sets
of actions from match event stream data to fixed-size players vectors using
non-negative matrix factorization. These player vectors offer a complete view of
a player’s playing style (within the limits of the data source), are constructed
in a purely data-driven manner, are human-interpretable and can be used in
machine learning systems such as clustering and nearest neighbor analysis.





Chapter 8

SoccerMix: Representing
Soccer Actions with Mixture
Models

In this chapter, we introduce SoccerMix, a novel mixture-model approach for
analyzing on-the-ball soccer actions that addresses a number of shortcomings of
grid-based approaches. On the one hand, it alleviates the problem of sparsity
by grouping actions in a data-driven manner. On the other hand, SoccerMix’s
probabilistic nature alleviates the issues of the arbitrary and abrupt boundaries
imposed by grid cells. More uniquely, SoccerMix also considers the direction
that actions tend to move the ball in, which is an important property for
capturing style of play that has received little attention thus far. For example,
it allows distinguishing among players or teams that play probing forward
passes versus those that play safer lateral passes in a specific zone of the pitch.
Intuitively, the action groups produced by SoccerMix can be thought of as
describing prototypical actions of a certain type, location, and direction.

We provide a number of use cases that illustrate how SoccerMix can aid in
scouting and match analysis by capturing the playing styles of both teams and
players. In contrast to existing approaches which solely focus on the offensive
style of a team, SoccerMix can also yield insights into a team’s defensive style.
Specifically, we model how a team can force its opponent to deviate from its
typical style of play.

A publicly available implementation of SoccerMix is available at https://
github.com/ML-KULeuven/soccermix.
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The content of this chapter is based on the following publication [52]:

Decroos, T., Van Roy, M., and Davis, J. SoccerMix: Representing Soccer
Actions with Mixture Models. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases (2020), Springer

8.1 Shortcomings of Grid-based Approaches

Analyzing the playing style of a team or player based on event stream data
often involves constructing a so-called fingerprint of that team or player which
summarizes their actions and captures distinguishing behaviors such as where
on the field they tend to perform certain actions. This is often done by dividing
actions into groups of similar actions and counting how often players or teams
perform actions within each group. However, assessing similarity is difficult
because actions are described by various attributes (e.g., type, location) which
lay in different domains (e.g., discrete, continuous).

One approach is to lay a grid over the field and proclaim two actions to be similar
when they are of the same type and fall in the same grid cell [37, 44, 174, 175].
However, this approach has three downsides. First, the somewhat arbitrary and
abrupt boundaries between grid cells can make certain spatially close actions
appear dissimilar. Second, choosing the best resolution for the grid is non-
trivial as a coarse grid ignores important differences between locations, while
a more fine-grained grid will drastically increase the sparsity of the data as
a smaller number of actions will fall in a single grid cell. Third, ideally we
would like to group actions on additional attributes such as ball direction, but
considering more attributes makes each action more unique, which increases the
sparsity in the data. Hence, most approaches only include one or two attributes
in their analysis [12, 44, 132]. Rarely do approaches consider three or more
attributes [50, 175].

8.2 Methodology

Our goal is to capture the playing style of either a player or a team. As in past
works [44, 83, 174, 175], our intuition is that playing style is tied to where on
the pitch a player (or team) tends to carry out certain types of actions. Most
playing style analysis techniques follow the same two-step approach:

Step 1: Partition all on-the-ball actions into groups of similar actions and
represent each action by its membership to one or more of these groups.
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Step 2: Transform the group membership counts of a player’s or team’s actions
into a human-interpretable summary of playing style.

Traditionally, most research has focused on the second step [37, 44, 50, 174].
However, picking sub-optimal groups in the first step can introduce significant
problems such as sparsity down the line. In fact, many sophisticated data
aggregation methods such as pattern mining [50] and matrix factorizaton [44]
are often only used in step two to combat the problems introduced by the
sub-optimal groups established in the first step.

In this chapter, we attempt to tackle the first step in a more intelligent manner
than before in order to greatly simplify the second step. More specifically,
we aim to find groups of similar actions such that players’ or teams’ group
membership counts are already human-interpretable and informative of playing
style. This way, no additional sophisticated transformation is needed in step
two. Finding these groups of similar actions involves answering four questions:

1. Which properties of actions are relevant for capturing playing style?

2. How can we group actions based on both discrete and continuous
properties?

3. How can we prevent sparsity (many groups with little or no actions in
them)?

4. How can we group actions based on properties with different notions of
similarity (e.g., linear data vs. circular data)?

8.2.1 Describing Actions

Various companies provide event stream data and each one uses a different
format, has varying definitions of events, and records different sets of events.
Moreover, the data also contains extraneous information such as changes in
weather that are not crucial for analysis. The SPADL representation [42]
addresses these concerns by converting event streams to a uniform representation
designed to facilitate analysis. Additionally, we wish to treat the initiation
and completion of certain actions separately (e.g. giving and receiving a pass),
as these are typically performed by different players. Hence, we began by
transforming our data into the Atomic-SPADL format (Chapter 3).

Typically, playing style analysis focuses on action types and locations. One
piece of data that is important for style of play and which has received little
attention is the direction of actions. For example, it is important to differentiate



124 SOCCERMIX: REPRESENTING SOCCER ACTIONS WITH MIXTURE MODELS

Figure 8.1: This phase of Liverpool scoring a goal illustrates the event stream
data used in this chapter. Actions are described by their type t, location (x, y),
and direction θ.

among players who tend to play probing forward passes versus those that tend
to play safer, lateral passes. Therefore, in this chapter, we represent each action
as a tuple (t, x, y, θ) where t is the type of the action (e.g., shot, tackle, pass,
receival), x ∈ [0, 105] (meters) and y ∈ [0, 68] (meters) denote the location on
the field where the action happened, and θ ∈ [−π, π] (radians) denotes the
direction the ball travels in following the action (Figure 8.1).

8.2.2 Grouping Actions with Mixture Models

Grouping actions on multiple attributes is non-trivial as it requires fusing
together both discrete attributes (i.e., the action type) and continuous attributes
(i.e., the location and direction). Past work has mostly ignored direction and
focused on fusing action type and location. The most common approach is to
lay a grid over the field and for each action type count the number of times it
occurs in each zone [44, 174, 175]. However, this approach has two significant
problems. First, this approach ignores the fact that some actions only ever
occur in certain areas of the pitch (e.g., throw-ins only occur on the outer edges
of the field, shots typically only occur on the attacking half of the field). Second,
the boundaries between grid cells are arbitrary and abrupt, which can disrupt
the spatial coherence. This can make some actions that occurred in nearby
locations appear dissimilar because they fall in different location groups.

This chapter takes a different approach and uses mixture models to cluster
actions. Mixture models are probabilistic models that assume that all the data
points are generated from a mixture of a finite number of distributions with
unknown parameters [117]. Formally, a mixture model calculates the probability
of generating observation x as:

p(x) =
k∑

j=1
αj · Fj(x|Θj) (8.1)
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(a) Shot locations (b) The 2D Gaussian dis-
tributions learned on shot
locations

(c) Shots colored according
to the distributions that
most likely generated them.

Figure 8.2: Stage 1 of SoccerMix: a mixture model with three 2D Gaussian
distributions is fitted to shot locations.

where k is the number of components in the mixture model, αj is the
probability of the jth component, and Fj is a probability distribution or density
parameterized by Θj for the jth component. Intuitively, mixture models can be
thought of as a soft clustering variant of k-means clustering. Mixture models
address all the drawbacks of the grid-based approach. First, they perform a
more data-driven as opposed to a hand-crafted partitioning of the pitch. This
results in a more nuanced partitioning as the mixture model can learn a more
fine-grained representation in zones where lots of actions take place and a
more course-grained one in zones where actions are less frequent. Second, by
performing a soft grouping each action has a probability of belonging to each
cluster, which alleviates the arbitrariness of grid boundaries.

SoccerMix hierarchically groups actions with mixture models in two stages:

Stage 1 For each action type, fit a mixture model to the locations (x, y) of the
actions of that type. This allows SoccerMix to model that certain action
types usually occur in specific areas of the field (e.g., shots only occur
close to the goal, see Figure 8.2)

Stage 2 For each component of each mixture model in stage 1, fit a new
mixture model to the directions θ of the actions in that component. This
allows SoccerMix to model that the direction that a specific action tends
to move the ball in, depends on the location where the action occurred
(e.g., passes in central midfield are usually lateral or backwards, rarely
forwards, see Figure 8.3).
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(a) Passes that start in the
central midfield

(b) The Von Mises distri-
butions learned on pass
directions

(c) The passes colored ac-
cording to the distribution
that most likely generated
them.

Figure 8.3: Stage 2 of SoccerMix: a mixture model with three Von Mises
distributions is fitted to a group of passes that start in the central midfield. In
Figure 3b, component 1 (red) illustrates how a single Von Mises distribution can
be fitted to observations close to −π and π and is thus essential for describing
backwards passes.

8.2.3 Distributions of Locations and Directions

The next question to consider is which distributions to use as the components
of the mixture models. Locations and directions require a different notion of
similarity. In the spatial domain, nearby locations are similar, which we can
naturally model using a 2D Gaussian distribution (Figure 8.2) [141]:

pdf(x) = 1√
(2π)2|Σ|

exp
(
−1

2(x− µ)TΣ−1(x− µ)
)

(8.2)

where µ is the mean and Σ is the covariance matrix of the distribution.

When viewed as directions, −π + ε1 and π − ε2 are similar because directions
can be seen as values on a circle rather than on a line. However, a Gaussian
distribution would not consider these directions to be similar. Therefore, we
model the directions using a Von Mises distribution which arises in the directional
statistics literature [13, 112]. Unlike a Gaussian, Von Mises distributions allow
for the possibility that observations close to −π and observations close to π can
be generated by the same distribution (Figure 8.3). The probability density
function of a Von Mises distribution is:

pdf(θ) = 1
2πI0(κ) exp (κ cos(θ − µ)) (8.3)

where µ is the mean direction (the distribution is centered around µ) and κ
is a measure of concentration (κ = 0 means that the distribution is uniform
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over the circle while a high value for κ means that the distribution is strongly
concentrated around the angle µ). Finally, I0(κ) is the modified Bessel function
of order 0, whose exact definition lies beyond the scope of this chapter [112].

8.2.4 Fitting a Mixture Model to the Data

Fitting the parameters of a mixture model to a data set is typically done using
the Expectation Maximization algorithm [9]. Given n observations {x1, . . . , xn},
k distributions {F1, . . . , Fk}, and nk latent variables rij which denote how likely
it is that distribution Fj generated observation xi, the algorithm iteratively
performs the following two steps:

Expectation For each observation xi and distribution Fj , compute the
responsibility rij , i.e., how likely it is that Fj generated xi:

rij = αj · Fj(xi|Θj).

Maximization For each distribution Fj , compute its weight αj and its
parameter set Θj . αj is the prior probability of selecting component
j and can be computed as follows:

αj =
∑n

i=1 rij∑k
j=1

∑n
i=1 rij

.

Θj is the parameter set that maximizes the likelihood of distribution Fj

having generated each observation xi with probability rij . To update Θj ,
we employ the distribution-specific update rules detailed below.

It is straightforward to compute the maximum likelihood estimates for the
Gaussian distribution’s parameter set Θj = {µj ,Σj}:

µj = 1∑n
i=1 r

′
ij

n∑
i=1

r′ij · xi (8.4)

Σj = 1∑n
i=1 r

′
ij

n∑
i=1

r′ij · (xi − µj)(µj − xi)T (8.5)

where r′ij is a normalized responsibility computed as:

r′ij = rij∑k
j=1 rij

.
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Computing the maximum likelihood estimates for the Von Mises distributions is
more challenging for two reasons. First, we use the output of the learned location
mixture models as input for the direction mixture models. More specifically,
each observation xi has a respective weight wi = αloc · Floc(xi|Θloc) (where Floc

is the location distribution we wish to further decompose) that represents the
probability of observation xi being part of the input set of observations for
the direction mixture model. These weights wi necessitate slightly altering
how the responsibilities rij are normalized. Second, learning the parameters
for a Von Mises distribution is inherently harder than for Gaussians. Directly
estimating κj is impossible as its exact equations cannot be analytically solved.
Luckily, an approximation using the mean result distance Rj exists that works
remarkably well for many practical purposes (Equation 8.7) [112]. We first
construct normalized responsibilities r′′ij that pretend that each observation xi

in the data set was generated by the mixture model with a probability of wi

and then update the parameter set Θj = {µj , κj} as follows:

µj = atan2
(
µsin

j , µcos
j

)
(8.6)

κj ≈
Rj(2−R2

j )
(1−R2

j ) (8.7)

where

µsin
j = 1∑n

i=1 r
′′
ij

n∑
i=1

r′′ij · sin xi µcos
j = 1∑n

i=1 r
′′
ij

n∑
i=1

r′′ij · cosxi

Rj =
√

(µsin
j )2 + (µcos

j )2 r′′ij = wi ·
rij∑k

j=1 rij

.

One of the contributions in this chapter is that we publicly release our
implementation of mixture models at https://github.com/ML-KULeuven/
soccermix. This implementation supports learning a mixture of any type
of distribution from a weighted input set of observations.

8.2.5 Practical Challenges

When applying SoccerMix to real-world event stream data, three practical
challenges arise. First, the locations in event stream data are approximations.
For some actions, such as goal kicks, annotators use a set of predefined start
locations instead of its actual location. Therefore we add random noise
to the locations and directions of actions to ensure that we do not simply
recover the annotation rules for some actions. Second, the mixture models are

https://github.com/ML-KULeuven/soccermix
https://github.com/ML-KULeuven/soccermix
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sensitive to outliers (e.g., actions with highly irregular locations). Therefore,
we preprocess the event stream data to remove outliers using the Local Outlier
Factor algorithm [25]. Third, we need to select the number of components used
in each mixture model. The number of components needed depends on the
action type. For example, passes need more components than corners; a team
can perform passes anywhere on the field, but they can take corners from only
two locations (the corner flags). We select the number of components in each
mixture model by formulating an integer linear programming problem where
the goal is to optimize the total Bayesian Information Criterion (BIC) of the
entire set of mixture models.1

8.2.6 Capturing Playing Style with SoccerMix

Our goal is to construct a vector that describes a specific player’s or team’s style.
Intuitively, SoccerMix discovers groups of similar actions, where each group
describes a prototypical action of a certain type, location, and direction. Hence,
we can use the learned mixture models to encode each action as a probability
distribution over all prototypical actions and encode this in a weight vector.
We can then build a style vector for a player (team) by summing the weight
vectors of all actions performed by that player (team) in a specific time frame
(e.g., a game or a season). In the style vector, the weight of an action group can
be interpreted as how often a player (team) performed that prototypical action.

8.3 Experiments

In our experiments, we use event stream data provided by Statsbomb for
the 2017/18 and 2018/19 seasons of the English Premier League (EPL). Using
400,000 actions sampled from the 2017/18 season, we fitted 2D Gaussian mixture
models to the locations of the 23 action types to produce 147 location groups.
Next, we fitted Von Mises mixture models to the directions of the actions in
those groups to produce 247 groups that describe prototypical actions of a
certain type, location, and direction (Figure 8.4). Learning all mixture models
took approx. 30 minutes on a computer with 32GB RAM and an Intel i7-6700
CPU @ 3.40GHz with 8 cores. We used these mixture models to produce weight
vectors for ± 2,300,000 actions in 760 games and used those to construct style
vectors for 676 players and 23 teams.

1More details on our approach to select the number of components used in each mixture
model can be found in the public implementation.
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(a) Shots (b) Clearances (c) Throw-ins

(d) Dribbles (e) Interceptions (f) Passes

Figure 8.4: Examples of the prototypical actions discovered by SoccerMix.
Ellipses denote 2D Gaussian distributions that describe locations. Arrows
denote the mean directions of the Von Mises distributions that describe ball
directions. Some action types do not directly move the ball and are thus only
grouped on location (e.g., interceptions in Figure 4e).

In this section, we first show how the style vectors produced by SoccerMix can
be used to identify players based on their playing style. Next, we show how to
compare the playing styles of teams and players, along with an approach for
capturing the defensive style of teams. Finally, we use our style vectors to take
a closer look at the game that cost Liverpool the title to Manchester City in
the 2018/19 season and investigate what exactly went wrong.

8.3.1 De-anonymizing Players

No objective definition of playing style exists, which creates challenges.
Intuitively, one would expect that in the short-term (i.e., across consecutive
seasons) a player’s style will not change substantially. Based on this insight,
we proposed the following evaluation setup in Chapter 7: “Given anonymized
event stream data for a player, is it possible to identify the player based on his
playing style in the previous season?”

We perform the exact same player de-anonymization experiment as in Chapter
7 and compare SoccerMix to our player vectors based on non-negative matrix
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Table 8.1: The top-k results (i.e., the percentage of players whose 2017/18 style
vectors are one of the k most similar to their 2018/19 style vectors) and the
mean reciprocal rank (MRR) when retrieving 193 players in the English Premier
League from anonymized (season 2018/19) and labeled (season 2017/18) event
stream data.

Method Top-1 Top-3 Top-5 Top-10 MRR
SoccerMix 48.2% 62.7% 71.5% 80.8% 0.589
Player Vectors (NMF) 36.5% 53.2% 66.5% 83.2% 0.505

factorization (NMF). For both approaches, we used the actions of 193 players
that appeared and played at least 900 minutes in both seasons. Then, for each
player, we compared the distance between the style vector constructed over
the 2018/19 season to the style of all players in the 2017/18 season to create a
rank-ordered list of the most similar players. Table 8.1 shows how SoccerMix
is more successful than the NMF-based player vectors on nearly all ranking
metrics. In 48.2% of the cases, SoccerMix correctly identifies a player’s style for
the current season as being most similar to his previous season’s style, which is a
33% relative improvement over the NMF-based approach. Moreover, SoccerMix
has a substantially better mean reciprocal rank than the prior approach for this
task, which suggests that the style vectors of SoccerMix offer a more complete
and accurate view of players’ playing style.

8.3.2 Comparing the Playing Style of Players

The style vectors produced by SoccerMix can be used to illustrate the differences
in playing style between two players. As an illustrative use case, consider
comparing the playing style of Manchester City forward Sergio Agüero and
Liverpool forward Roberto Firmino who are both world-class center forwards
playing for top teams. Figure 8.5 illustrates the differences in their style vector
for shots, take-ons, interceptions, passes, dribbles, and receivals during the
2018/19 EPL season. Spatially, Agüero is more active in the penalty box as he
performs more take-ons, dribbles, and ball receivals in that area than Firmino.
In contrast, Firmino performs these actions more in the midfield. Finally,
the interception map shows that while Agüero does not completely neglect his
defensive duties, Firmino plays a more expansive role that sees him also intercept
the ball on the flanks and near the penalty box. These insights correspond
to Agüero’s reputation of being an out-and-out striker who camps out near
the opponent’s penalty box whereas Firmino often drops deep to facilitate for
his attacking partners Mohammed Salah and Sadio Mané. SoccerMix allows
generating such figures for any two players which has the potential to aid clubs
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(a) Shots (b) Take-ons (c) Interceptions

(d) Passes (e) Dribbles (f) Receivals

Figure 8.5: Differences in playing style between Manchester City forward Sergio
Agüero and Liverpool forward Roberto Firmino during the 2018/19 EPL season.
Blue (red) actions indicate that Agüero (Firmino) performed more of these
actions than the other. Both players are shown as playing left to right (→).
Agüero is more active in the penalty box, while Firmino’s actions are more
spread out over the midfield.

in player scouting as they can identify players whose style fits how they wish to
play.

8.3.3 Comparing the Playing Style of Teams

SoccerMix’s style vectors can also be used to compare the playing style of teams.
To illustrate this use case, we compare the playing styles of Manchester City
and Liverpool, who both completely dominated the 2018/19 English Premier
League, finishing at the top of the table with 98 and 97 points respectively with
a large 25-point gap to distant third contender Chelsea.

Figure 8.6 shows how Manchester City performs noticeably more take-ons,
passes, dribbles, and receivals in the heart of the opponent’s half compared
to Liverpool. This illustrates how the coaches of both teams have shaped
their team’s playing style to their own soccer philosophy. Under Jürgen Klopp,
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(a) Clearances (b) Take-ons (c) Interceptions

(d) Passes (e) Dribbles (f) Receivals

Figure 8.6: Differences in playing style between Manchester City and Liverpool
during the 2018/19 EPL season based on the prototypical action groups obtained
with SoccerMix. Blue (red) actions indicate that Manchester City (Liverpool)
performed more of these actions than the other team. Both teams are shown as
playing left to right (→). Liverpool funnels play towards their right side, while
Manchester City generally plays higher up the field.

Liverpool have perfected the art of frequent counter-pressing and speedy counter-
attacks. Under Pep Guardiola, Manchester City at times mimics the possession-
based, tiki-taka style of its coach’s ex-club (FC Barcelona), passing and moving
the ball high up on the field.

Additionally, Liverpool seems to funnel the play towards their right side,
performing noticeably more clearances, take-ons, and interceptions on their
right flank. The most likely source of this uptick is Trent Alexander-Arnold,
a right-back at Liverpool who is widely regarded as one of the best attacking
full-backs in professional soccer and is a spearhead of Liverpool’s transitional,
counter-attacking style of play.2

2https://sport.optus.com.au/articles/os6422/trent-alexander-arnold-is-
changing-the-full-back-position

https://sport.optus.com.au/articles/os6422/trent-alexander-arnold-is-changing-the-full-back-position
https://sport.optus.com.au/articles/os6422/trent-alexander-arnold-is-changing-the-full-back-position
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(a) Opponents’ offsides (b) Opponents’ crosses (c) Opponents’ passes

Figure 8.7: Illustrations of how Liverpool (a) employs a good offside trap, (b)
has a weaker defense at their right flank when it comes to preventing their
opponents from crossing the ball, and (c) forces other teams to play more on
their own half. Blue (red) indicates that teams perform more (fewer) of these
actions when playing against Liverpool.

8.3.4 Capturing the Defensive Playing Style of Teams

Approaches that capture playing style usually focus on offensive playing style,
i.e., what does a team do when in possession of the ball? Analyzing defensive
style is much harder as it involves off-the-ball actions such as correct positioning
and putting pressure on attackers, which are not recorded in event streams. Our
insight is that these off-the-ball actions are often performed with the intention
of preventing certain actions from occurring. This suggests that we can gain a
partial understanding of defensive style by measuring the effects that a team’s
off-the-ball actions have on what on-the-ball actions their opponent performs.
More precisely, we analyze how a team forces its opponents to deviate from
their usual playing style.

To illustrate this, we measure the mean difference between teams’ style vectors
constructed using (1) only the matches against Liverpool and (2) all other
matches (i.e., those not involving Liverpool). Figure 8.7 shows how Liverpool
causes their opponents, playing left to right, to be flagged more for offside than
is typical. This indicates a well-synchronized line of defense that employs a
very effective offside trap. The crosses show that, although Liverpool limits
the number of crosses its opponents perform, this restriction is not symmetric:
they allow fewer crosses from the left of defense (the offense’s right) than the
right. Lastly, as a combination of both offensive and defensive playing style,
Liverpool generally forces the other teams to play more on their own half than
on Liverpool’s half.
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(a) Passes (b) Dribbles (c) Receivals

Figure 8.8: Differences in Liverpool’s playing style during their lost away game
against Manchester City compared to their style when playing against all other
teams in the 2018/19 EPL. Blue (red) indicates Liverpool performing more
(fewer) of these actions in their away game against Manchester City. The
direction of play is left to right (→).

8.3.5 Case Study: How Liverpool Lost the Title to Manch-
ester City in a Single Game

On January 3rd, 2019, Liverpool held a 6 point lead atop the EPL table when
they traveled to play Manchester City in a highly anticipated match. Alas, in
their only league loss of the season, Liverpool fell 2-1 and ended up missing
out on the title to Manchester City by a single point. It is not a stretch to
say that this was the game that cost them the title. Using the concept of
style difference vectors from the previous section, Figure 8.8 illustrates how
Liverpool’s playing style in this game drastically deviated from how they played
against other teams. In short, Manchester City maintained their typical high
defensive line and forced Liverpool to remain on their own side of the field.
This is apparent in both the higher number of passes, dribbles, and receivals
Liverpool had to perform deep in their own half as well as the fact that they
performed significantly fewer actions than normal in Manchester City’s half.

While interesting, it is not completely surprising that Liverpool’s offensive output
suffered against its only decent rival that season, Manchester City. To dig deeper,
we adjust for the level of the opponent and compare Liverpool’s playing style
in their away game (loss) and home game (draw) against Manchester City in
2018/19 (Figure 8.9). In its away game, Liverpool made noticeably less use
of its left flank, performing fewer passes, dribbles, and receivals in that area.
This suggests that Liverpool’s left flank players were not functioning very well
that game, which is further evidenced by midfielder James Milner and winger
Sadio Mané on Liverpool’s left flank being substituted out in the 57th and 77th
minute of the game.
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(a) Passes (b) Dribbles (c) Receivals

Figure 8.9: Differences in Liverpool’s playing style between their away game
and their home game against Manchester City in the 2018/19 EPL. Red (blue)
indicates fewer (more) of these actions in the away game than in the home
game. Liverpool’s left flank players were having a bad day in the away game,
as evidenced by the fewer passes, dribbles, and receivals in that area.

8.4 Related Work

Many approaches group actions by overlaying a grid on the field [174, 44, 50].
How they differ is in how they combat the challenges associated with this grid.
In Chapter 6, we avoided the sparsity issues of a fine-grained grid by dividing
the field into only four zones (left-flank, midfield, right-flank, and penalty box),
as the performance of the pattern mining algorithm rapidly declined when using
a more fine-grained grid. However, those patterns can then only describe ball
movements between these four zones and are thus too broad and simple to be
able to identify unique characteristics related to playing style. Van Haaren et
al. [174] attempted to combine the advantages of both coarse and fine-grained
grids by encoding action locations on multiple granularity levels. However, they
found that this multi-level representation of actions blew up the search space of
their inductive logic programming approach and led to heavy computational
costs.

In Chapter 7, we applied a post-processing step to the counts of a fine-grained
grid. More specifically, the count of each grid cell is replaced by a weighted mean
of itself and its neighboring grid cells, which promotes the spatial coherence
between grid cells and combats issues such as sparsity and abrupt boundaries.
However, there are two downsides to this approach. First, a new technique
with its own parameters (that are non-trival to tune) is added to the analysis
pipeline. Second, this approach encourages dividing actions into a number of
groups that is excessive for representing the characteristics of the data, which
makes it difficult for automated systems to numerically process the new data
representation and for humans to interpret the end results. For example, in
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Chapter 7, we use 50× 50 = 2500 grid cells to represent shot behavior of players
(of which most will be empty), while SoccerMix only needs 3 location groups to
represent shot behavior.

8.5 Conclusion

Capturing the playing style of teams and players in soccer can be leveraged
in areas such as player scouting and match preparation. In this chapter we
introduced SoccerMix: an approach to intelligently partition player actions
into groups of similar actions. Intuitively, each group describes a prototypical
action with a specific type, location, and direction. We have shown how
SoccerMix can be used to capture the playing style of both teams and players.
Additionally, we introduced a new way to capture the defensive playing style of
a team by using deviations in the actions of that team’s opponents. Finally, we
have publicly released SoccerMix’s implementation at https://github.com/ML-
KULeuven/soccermix.

https://github.com/ML-KULeuven/soccermix
https://github.com/ML-KULeuven/soccermix




Chapter 9

Conclusions

This chapter summarizes the main contributions and conclusions of this
dissertation. It also offers some general “lessons learned” from the perspective of
both soccer analytics and artificial intelligence and provides possible directions
for future work.

9.1 Summary

The objective of this dissertation was to learn value and style from event
stream data using a number of techniques from the research field of artificial
intelligence. Towards this end, we identified a number of shortcomings in
the existing literature and made contributions in three broad areas of soccer
analytics: (1) representing event stream data, (2) valuing on-the-ball actions,
and (3) capturing the playing style of teams and players.

First, to better represent event stream data, we defined a new language
that simplifies and unifies the data of different event stream data vendors,
thereby encouraging the reproducibility of the soccer analytics research field.
Additionally, we released a software package to convert event stream data from
prominent vendors into this new language that, as of September 2020, has been
downloaded approximately 9000 times.

Second, to assign values to on-the-ball actions, we created a framework that
goes beyond simple metrics and possession-based approaches, which do not
recognize the value of defensive actions or consider the full context in which
actions are performed. Our framework uses a simple and elegant formula that
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formalizes the intuition that all actions in a match are performed with the
intention of increasing the chance of scoring a goal and/or decreasing the chance
of conceding a goal.

To capture the playing style of teams and players, we used AI techniques such
as non-negative matrix factorization and mixture models to model the spatial
component of event stream data. These techniques overcome a number of issues
(e.g., data sparsity, abrupt boundaries) that tend to plague approaches for
capturing playing style that manually divide the pitch into simple zones to
model the locations of actions. Additionally, we also introduced a new way to
capture the defensive playing style of a team by using deviations in the playing
style of that team’s opponents.

We summarize our contributions below and discuss the strengths and weaknesses
of each contribution.

9.1.1 Representing Event Stream Data

SPADL [42] is a language to describe player actions that alleviates a number
of engineering challenges commonly found in raw event stream data produced
by vendors such as Opta Sports [126], Wyscout [185], and StatsBomb [165].
SPADL offers three advantages over raw event stream data. First, SPADL
focuses exclusively on on-the-ball actions, ignoring less relevant event such as
weather changes. Second, SPADL unifies event stream data such that analysis
projects are transferable between event stream data vendors. Third, SPADL
always stores the same eight attributes per action, which makes actions much
easier to automatically parse compared to event stream data formats that allow
the presence of optional information snippets.

We also introduced Atomic-SPADL [48], which is a variant of SPADL that
removes the "result" attribute and adds a few new actions and event types. For
example, Atomic-SPADL treats the initiation and receival of passes as separate
actions. The advantages of Atomic-SPADL are that it can reward players’
contributions more fairly (e.g., a pass-giver will not be punished for a mistake
made by the intended pass receiver) and also produce more robust action values
than regular SPADL [48].

A Python package to automatically convert event stream data from Opta,
Wyscout, and StatsBomb to SPADL and Atomic-SPADL is available at https:
//github.com/ML-KULeuven/socceraction.

https://github.com/ML-KULeuven/socceraction
https://github.com/ML-KULeuven/socceraction


SUMMARY 141

9.1.2 Learning Value from Event Stream Data

In this dissertation, we introduced two approaches to value on-the-ball actions:
STARSS and VAEP.

STARSS

STARSS [51] is an approach to automatically rate the actions performed by
soccer players. Viewing a soccer match as a sequence of actions performed by
players, STARSS performs three steps to rate these actions. First, it splits the
match into phases of related actions. Second, it assigns a rating to each phase,
indicating how likely it is that the phase will end in a goal. Third, it distributes
the assigned rating over the individual actions that constitute the phase.

The strength of STARSS is that it is an approach to value actions that goes
beyond shots and goals. A weakness of STARSS is that it uses a predefined
formula to distribute the rating of a phase over its constituent actions rather
than take the specific characteristics and composition of the actions into account.
Additionally, STARSS is a possession-based approach that can only consider
the potential reward - and not the risk - of an action.

VAEP

VAEP [42] is a framework for valuing any type of player action based on its
impact on the game outcome while accounting for the context in which the
action happened. This framework enables giving a broad overview of a player’s
performance, including quantifying a player’s total offensive and defensive
contributions to their team.

Some strengths of VAEP are its elegant and simple formula and its ability
to consider a more complete view of an action’s context than earlier work.
Additionally, it is the first framework to quantify not just the offensive value,
but also the defensive value of an action by modelling the probability that the
opposing team will score in the near future. A weakness of VAEP is that, in
practice, the location of an actions is still by far the most dominant factor
to determine an action’s value. Consequently, most actions on the midfield
(which comprises the vast majority of actions in a game) get assigned values
close to zero and are thus still almost irrelevant when determining a players’
worth. Another weakness is that VAEP’s output is sensitive to the choice of
learning algorithm and the used training data. Compared to other metrics such
as Expected Threat [159], this makes VAEP’s player ratings less robust [178].
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However, preliminary research suggests that combining VAEP with Atomic-
SPADL alleviates the sensitivy issue [48].

An implementation of VAEP is available at https://github.com/ML-KULeuven/
socceraction.

9.1.3 Learning Style from Event Stream Data

In this dissertation, we introduced three approaches to learn style from event
stream data: Tactics Discovery using sequential pattern mining algorithms,
Player Vectors using non-negative matrix factorization, and SoccerMix using
mixture models.

Tactics Discovery

We introduced an approach to mine patterns in event stream data and
characterize teams by their most frequent patterns [50]. More specifically,
our approach follows the following five steps: (1) divide each match into phases
(2) cluster the phases using Dynamic Time Warping [123], (3) rank the clusters
using user-preferences, (4) mine each cluster using sequential pattern mining
algorithm [68], (5) rank the discovered patterns on user-preferences. The most
difficult challenge lied in step four, which involves converting the event stream
into a format compatible with sequential pattern mining algorithms.

The strength of our approach is its ability to simultaneously take many properties
of event stream data into account such as actions’ type, location, involved players,
and relative ordering. A weakness of our approach is that the discretization of
the locations of actions could not be done in a fine-grained manner without
hindering the pattern mining step. As a result, this approach is not yet ready to
be turned into a practical tool that generates actionable insights. Additionally,
most domain experts found the intermediate spatial clusters generated by our
approach more interesting than the final symbolic patterns.

Player Vectors

Player vectors [44] succinctly express where on the pitch a player tends to
perform passes, dribbles, crosses, and shots. These vectors are constructed
as follows. First, we overlay a grid on the pitch and construct heatmaps for
each player and action type by counting how often a player performs those
actions in each grid cell. Next, we compress these heatmaps to short vectors

https://github.com/ML-KULeuven/socceraction
https://github.com/ML-KULeuven/socceraction
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using non-negative matrix factorization (NMF) [102] and concatenate together
a player’s compressed vectors for each action type to construct his player vector.

The strengths of our approach are its interpretability and its robustness. The
resulting components of the factorization are interpretable as spatial groups of
a specific action type (e.g., a shot close to the goal, a center dribble, a pass
from the left back to the left flank) and the player vectors themselves can be
seen as quantifying how often each player performs actions of a certain type
and spatial group. Furthermore, our approach will usually rediscover the same
principal components, even when applied to event stream data of different
seasons, leagues, and vendors. The most important weakness of our NMF-based
approach is its inability to handle sparsity when using a highly granular grid.
To make their decomposition feasible, we had to apply a smoothing step to the
heatmaps of players’ passes, dribbles, crosses, and shots. For rarer actions such
as tackles, clearances, and keeper saves, the decomposition was impossible even
after applying this smoothing step.

SoccerMix

SoccerMix [52] is an approach based on mixture models to intelligently partition
player actions into groups of similar actions. Intuitively, each group found by
SoccerMix describes a prototypical action with a specific type, location, and
direction.

The strength of SoccerMix is that it overcomes the problems (i.e., sparsity
and abrupt boundaries) associated with grid-based approaches. Additionally,
SoccerMix’s interpretable action groups can be used to visually compare the
playing style of teams and players. One weakness of SoccerMix is that, compared
to the player vectors in Chapter 7, the configuration of the discovered action
groups is more sensitive to the underlying training data. Additionally, choosing
the correct number of components of each mixture model is non-trivial and
currently requires some manual tuning.

An implementation of SoccerMix is available at https://github.com/ML-
KULeuven/soccermix.

9.2 Lessons Learned

In this dissertation, we studied how the research fields of soccer analytics and
artificial intelligence can be combined and what both research fields have to offer

https://github.com/ML-KULeuven/soccermix
https://github.com/ML-KULeuven/soccermix
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to each other. We now summarize some general lessons learned and advice for
respectively soccer analytics practitioners and artificial intelligence researchers.

9.2.1 Lessons Learned for Soccer Analytics

We discuss five lessons learned in this dissertation from the perspective of soccer
analytics.

Representation. The quality of the data representation plays a large part
in the success of an analysis task. A special point of attention here is
using the correct levels of abstraction for various concepts in soccer. For
example, Opta [126] encodes shots in four different ways depending on the
end result (goal, miss, save by the keeper, ball hit the goal post). Rather
than adapt a model to work with these four different event types, it is
much easier to preprocess the data such that shots are always encoded as
"shot" actions [42].

Visualization. Visualizing the data is often more useful than inspecting raw
values. For example, it is much easier to perform a sanity check on the
values of actions plotted out on a soccer pitch, than on the raw (x, y)-
coordinates of those actions. Similarly, the heatmaps and mixture models
in Chapters 7 and 8 only have meaning when plotted out on a pitch; they
are impossible to interpret based on their numerical values alone.

Early Results. No analysis pipeline is ever perfect on the first try. Either
the method does not work exactly as intended or the data contains
some previously unknown quirks. Therefore it is always useful to inspect
(intermediate) results as early as possible. For example, in Chapter 6
we first verified the quality of the intermediate spatial clusters before
proceeding with the sequential pattern mining step for each cluster. In
Chapter 8, we immediately plotted out the locations of groups of actions
and realized that we needed to remove some outliers before modelling
those actions with mixture models.

Spatial Component. One aspect that we struggled with throughout this
dissertation is the spatial component of event stream data. We applied
a number of techniques such as Dynamic Time Warping [123], gradient
boosted decision trees [35], grid discretization [44], and mixture models [9].
Figuring out the best way to handle the spatial component is non-trivial
as each approach has its own strengths and weaknesses. However, it is
worth it to rigorously research the best way to handle locations as this
will often be by far the most impactful modelling choice when learning
value or style from event stream data.
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Artifical Intelligence. The field of artificial Intelligence offers a plethora of
techniques that can be used to answer important questions in soccer
analytics. The following non-exhaustive list includes some illustrative
examples. Binary probabilistic classification models have been used to
value actions [20, 42]. Pattern mining [50, 12, 175], motif discovery [12],
deep learning [101], inductive logic programming [174], and non-negative
matrix factorization [44] have been used to understand tactics and playing
style. Reinforcement learning [53] and Markov decision processes [159]
have been used to analyze technical performance in a match. Multi-agent
learning has been used to learn the value of teamwork from outcomes
of pass interactions between players [11]. Predictive modeling has been
used to understand and manage training load [92]. Deep learning [94]
and integer linear programming [157] have been used for tracking players
during a match.

9.2.2 Lessons Learned for Artificial Intelligence

We discuss five lessons learned in this dissertation from the perspective of
artificial intelligence.

Representation. The first lesson learned for soccer analytics practitioners is
equally relevant for artificial intelligence researchers. Finding the best
representation for the data and using our understanding of the application
domain to construct the correct abstractions often has a much larger
impact on the success of an analysis task than fine-tuning the parameters
of employed AI models.

Domain Knowledge. Incorporating domain knowledge can improve the
performance of AI models. For example, the location of the goal is
extremely relevant for expected-goals models as the accuracy of these
models drastically improves when the distance and angle to the goal
are used as features instead of the raw (x, y)-coordinates of shots [143].
Another example is using the insight that players’ playing style does not
drastically change over subsequent seasons to evaluate approaches that
capture playing style (Chapters 7 and 8).

Interpretability. Ultimately, experts are interested in translating the findings
arising from analytics into practice. These findings should always be
intuitive and interpretable without fully understanding the inner workings
of the model that produced them. One way to facilitate this is to report
these findings in a visual way; for example, by plotting them out on a
soccer pitch.
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Ground Truth. Real-world data often lacks ground truth labels. These may
be hard to obtain or simply not exist. For example, in soccer there are
no objectively best players and a team’s tactical plan is only known to
the team itself. However, the richness of the soccer domain encourages
researchers to devise creative solutions for this problem. Some examples
are measuring correlation with proxy signals such as player transfer
value [42], journalist opinions on playing style [44], and evaluating results
by asking domain experts [21, 127].

Soccer Analytics. The field of soccer analytics is a fruitful source of real-
world data and a testbed for many AI techniques. Additionally, a number
of core areas in artificial intelligence such as interpretability, decision
making, representation learning, and understanding behavior are all also
relevant areas within soccer analytics.

9.3 Future Work

The contributions of this dissertation provided valuable new methods and
insights for learning value and style from event stream data. Nevertheless, there
are still many open questions and challenges in the field. This section presents
several possible directions for future work.

Expand SPADL

The SPADL format [44] is easy to process, but sometimes lacks depth. Because
it unifies the data of different event stream data vendors, it is in a way their
greatest common divisor, only including information that is present in all
possible sources of event stream data. Hence, it could be interesting to expand
SPADL with useful information not necessarily collected by all vendors such as
whether defenders are putting pressure on the player currently in possession
of the ball or the locations of relevant players during key events such as shots.
However, the specifics of this expansion will need to be done carefully and with
attention for software engineering principles in order to not drastically increase
the engineering costs when analyzing event stream data.

Learn Values with SoccerMix

SoccerMix [52] is a completely new way to represent individual soccer actions.
In this dissertation, we used this probabilistic representation to capture the
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playing style of teams and player, but we could also use SoccerMix to value
actions. For example, we can use each action’s probability distribution over
SoccerMix’s prototypical actions as input features for VAEP [42], or we can
view each action in the data as being in a quantum state of prototypical actions
and use these states in a Markov model-based approach such as Expected
Threat [159].

Simulate Event Stream Data

Despite commendable efforts by Wyscout [185], StatsBomb [165], and Metrica
Sports [120] in recent years, event stream data is still a scarce resource. An
approach that could generate virtual event stream data indistinguishable from
actual event stream data, would be immensely helpful to further democratize the
field of soccer analytics. For example, SoccerMix’s probabilistic representation
for actions could be used to construct a generative model. Another line
of research that would be interesting to further explore here is the field of
Generative Adversarial Networks [77].

Model Relations Between Consecutive Actions

One aspect that is currently underexplored in soccer analytics is the relationships
between consecutive actions. For example, VAEP does not care much about
the actions preceding the most recent action other than to estimate the current
speed of play. Similarly, Expected Threat uses no more information than the
current zone in which an action occurred. Finally, the two approaches presented
in this dissertation to capture the playing style of players (Player Vectors and
SoccerMix) both only consider the individual actions a player performs rather
than the phases of consecutive actions in which the player participates.

For now it remains an open question whether a past action has any effect
on the success of future actions further down the line or if current methods
are simply unable to capture these relations. We suspect that the biggest
challenge in modelling these relations is the sparsity of the resulting interaction
tensors. Hence, it could be interesting to look at techniques that can efficiently
compress sparse matrices from research fields such as tensor factorization [158]
or recommender systems [99].
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Consider Player/Team-Information when Valuing Actions

All models that value actions are currently agnostic towards the player or team
involved in the action. However, one could argue that a dribble made by Lionel
Messi tends to have a higher chance of succeeding than a dribble made by the
average soccer player; and that a model for valuing actions should consequently
take this into account when determining the value of that dribble.

One way to account for this would be to construct a fingerprint of each
player/team that captures the value and style of that player/team (perhaps
using techniques from this dissertation) and add this fingerprint to the feature
set of each individual action when training a model to value actions. However,
we suspect that this approach would require gargantuan amounts of training
data and would also raise a number of concerns related to how applicable the
learned model would be to unseen data. Another interesting avenue to explore
here is to again consider this as a problem related to sparsity (i.e. there are too
few examples of the same player doing the same action in the same location) and
look at techniques from the field of recommender systems such as Factorization
Machines [140].
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