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Abstract. Soccer players have a variety of skills such as passing, tack-
ling, shooting and dribbling. However, their abilities are not fixed and
evolve over time. Understanding this evolution could be interesting from
many perspectives. We analyze player skill data from the FIFA video
game series by EA Sports using tensor methods. This data can be orga-
nized as a tensor over three dimensions, namely players, skills, and age,
which we explore in two different ways. First, we use a polyadic decom-
position to uncover hidden structures among skills and see how these
structures evolve over time. Second, we use a Tucker decomposition to
predict how a specific player’s skills will evolve over time.

1 Introduction

Playing soccer involves multiple technical skills such as passing, tackling, shoot-
ing and dribbling as well as physical skills like acceleration and endurance. Over
time a player’s ability will change; with practice skills can improve, but as a
player ages certain skills will inevitably decline. Understanding this evolution is
interesting from several perspectives. First, gaining intuition about the relation-
ship between different skills and how they change over time can yield insights
into the game. Second, predicting how a player will evolve can help a club with
roster decisions such as identifying potential transfer targets or deciding which
current players to retain and for how long.

One potential source of skill data comes from the FIFA video game series,
where EA Sports models all soccer players using ratings for in-game skills with
the aim of reflecting their real-life soccer skills.3 In this paper, we explore model-
ing temporal evolutions in this skill data set. These data can be naturally mod-
eled using a tensor with three modes or axes: players, skills and age. We make
three contributions. First, we highlight a variety of challenges that arose while
analyzing the SoFIFA data. Second, we explored the SoFIFA data tensor using
the canonical polyadic decomposition (CPD) in order to extract interpretable
latent structures. Moreover, this decomposition can yield some insights into how
these structures evolve over time. Third, we employ the Tucker decomposition
of a tensor in order to project how a specific player’s skills will evolve over time.
That is, we can predict a player’s ratings for each skill at a future age.

3 These skill ratings are accessible online at https://www.sofifa.com.
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2 Tensors and the SoFIFA Data

We provide a brief background on tensors, describe our data set and highlight a
number of challenges encountered when analyzing this data.

2.1 Tensors

Tensors are a generalization of vectors and matrices that allow us to model
the interactions between different variables such as players, skills, and age. An
order-d tensor A ∈ Rn1×n2×···×nd can be identified with a d-array. The different
dimensions of the tensors are called the modes. This paper focuses on order-3
tensors, but all presented theory can be generalized to higher orders as well. See
the survey by Kolda and Bader [4] for more details.

2.2 Data description

We used all available data from the FIFA 07 game up to the FIFA 18 game
to track players’ skill evolution. Human experts employed by EA Sports assign
each soccer player ratings between 0 and 100 for 24 different skills (e.g., crossing,
finishing, dribbling, etc; see Figure 1). Which experts and how many assigned
ratings to each player is not known. Updating the skill ratings is done in an
open-source fashion; a community of 8,000 coaches, scouts and season ticket
holders can submit inconsistencies which are then checked and fixed by a small
team of 25 EA producers [1]. SoFIFA.com details each player’s biological data,
wage, club, positions and skills in player cards (Figure 1). These player cards
are updated through time. From 2007 to 2012, the player cards were updated
biannually, and thereafter EA Sports started updating them weekly.

For each player, we can capture the evolution of his skills as he ages in a
matrix by scraping the skill values on his player card as they were on January
1st of each year from 2007 to 2018. We then stack these player matrices in a
three-dimensional tensor of the form: players× skills× ages.

2.3 Data challenges

Analyzing real world data is challenging. In this paper, most of the challenges
are related to the quality of the skill ratings. We discuss five challenges.

Cold start Players have played few matches at the start of their career. Hence
it is hard for experts to construct a player card with accurate skill ratings
for new players based on little data.

Human subjectivity Rating players’ skills is inherently a subjective task. A
difference in experience between human experts can lead to different opinions
about the same player.

Ratings for irrelevant skills Each player gets a rating for every skill avail-
able, including those that are not relevant for their player type (e.g., field
players receive ratings for goalkeeping skills).
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86 Crossing

Attacking

95 Finishing

70 Heading Accuracy

92 Short Passing

97 Dribbling

Skill

94 FK Accuracy

89 Long Passing

96 Ball Control

91 Acceleration

Movement

86 Sprint Speed

95 Reactions

6 GK Diving

Goalkeeping

11 GK Handling

15 GK Kicking

14 GK Positioning

8 GK Reflexes

85 Shot Power

Power

72 Stamina

66 Strength

94 Long Shots

48 Aggression

Mentality

75 Penalties

33 Marking

Defending

28 Standing Tackle

Lionel Messi (ID: 158023)
Age 31 (Jun 24, 1987) 170cm 72kg
CF RW ST
Value €110.5M Wage €565K

94 Overall Rating 94 Potential

Fig. 1: Lionel Messi’s player card with his ratings for the 24 different skills.
Each skill rating is a number between 0 and 100 that quantifies how proficient
the player is at that skill estimated by human experts. The overall rating is a
weighted average of the skill ratings. The exact weighting scheme employed by
FIFA is unknown, as is the way they predict the potential of a player, which is
the highest overall rating a player can attain in the future.

Artificial boosts EA Sports is known to manually boost the ratings for well-
known players if they disagree with the expert’s opinion [5], which disrupts
the quality and consistency of the ratings in the data set.

Disruptive skill corrections Three types of corrections can occur that are
unrelated to actual changes in player skill. First, due to the cold start prob-
lem, early-career players can receive wildly inaccurate initial skill ratings,
which are later (when the player has played more matches) corrected by a
large value, causing a disruptive jump in the skill evolution. Second, a collec-
tive correction can happen in which all players receive a big adjustment for a
specific skill. For example, the GK Kicking skill was significantly reduced for
all field players with the release of the FIFA 11 video game. Finally, the newer
FIFA games receive updates on a weekly basis and hence, rating adjustments
have become more event-related now compared to older FIFA games, when
updates only happened once or twice a year. For example, Messi’s penalty
skill was lowered from 78 to 75 in the update from 21 December 2017 after
he missed a penalty kick on 17 December 2017 [6, 7].
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3 Exposing Hidden Structure with CPD

Since we are dealing with temporal data that describes the evolution of players
over time, tensor decompositions provide a straightforward and natural way to
discover patterns and predict evolution. A decomposition that allows us to dis-
cover intelligible hidden, underlying patterns in the player data is the canonical
polyadic decomposition [3]. The CPD approximates a tensor A ∈ Rn1×n2×n3 as
a sum of r pure tensors Ai, where each Ai can be written as the tensor product
of the vectors pi, si, and ai, living in respectively Rn1 ,Rn2 and Rn3 :

A ≈
r∑

i=1

Ai =

r∑
i=1

pi ⊗ si ⊗ ai. (1)

Recall that for x ∈ Rn1 ,y ∈ Rn2 and z ∈ Rn3 we have

x⊗ y ⊗ z := [xiyjzk]
(n1,n2,n3)
(i,j,k)=(1,1,1) ∈ Rn1×n2×n3 .

We then define the player factor matrix as P := [p1 p2 ... pr], the skill factor
matrix as S := [s1 s2 ... sr] and the age factor matrix as A := [a1 a2 ... ar]. If
the CPD is of rank r and all the elements in the rank-1 terms are non-negative,
then the rank-1 terms can be seen as the r dominant building blocks of our
tensor, which is conceptually similar to non-negative matrix factorization. A
crucial feature of CPD that distinguishes it from many matrix-based approaches
is that the factorization into the pure tensors Ai is unique up to the order of the
summands; see [2] for details.

To illustrate a CPD-based analysis, we take the rank-7 CPD of a tensor
containing skill ratings of 17,859 players for all 24 skills over the age range
[23..29]. Each term can be interpreted as a collection of correlated skills that
make up a common characteristic or trait observed in different soccer players.
Figure 2a illustrates each term’s skill vector containing the weights of all 24
skills. Each weight in such a vector represents how important the skill is in the
term. Each term’s evolution over player age is visualized in Figure 2b. For most
of the terms the evolution is near-constant. We now briefly discuss the terms.

1. Mean The first term of the decomposition represents the mean of the data
as it is the most dominant part of the data.

2. Evolution term The second term describes the overall positive evolution of
skills up to the age of 28-29.

3. Defender trait The third term represents the trait of a defender, showing
high weights for the Marking and Standing Tackle skills.

4. Heading trait The fourth term represents the trait of players that are good
at heading, showing high weights for Strength and Aggression. Interestingly,
this trait is also correlated with Acceleration and Sprint Speed according to
our decomposition.

5. Goalkeeper trait The fourth term represents trait of goalkeepers, with high
weights for all goalkeeper skills (e.g., GK Diving, GK Handling, GK Position-
ing) and more general skills also associated with goalkeepers (e.g., Strength,
Reactions).
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6. Correction term Prior to FIFA 11, all players had a high rating for GK
Kicking. At the introduction of this game, all field players received a large
reduction for this skill. This term accounts for this correction and illustrates
how CPD can expose hidden structure in the data as we were initially un-
aware of this correction in the data.

7. Striker trait The seventh term is the trait of players who are good at skills
typically associated with strikers such as Finishing, Dribbling, Shot Power,
Long Shots and Penalties.
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(a) The skill vectors of the seven terms in the CPD of our data tensor.
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(b) The age vectors of the seven terms in the CPD of our data tensor. The orange
evolution term describes the positive evolution of skills up to the age of 28-29. The
brown correction term accounts for the reduction in GK Kicking all players received
at the introduction of FIFA 11. The other five terms are relatively stable over all ages.

Fig. 2: The vectors of the rank-7 CPD visualized.
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Player examples We illustrate how each player is essentially a linear combi-
nation of these traits. The coefficients for each player can be found in the player
factor matrix. We give an example for a famous player in each position. Their
coefficients can be found in Table 1.

Table 1: Coefficients for Messi, Modrić, Chiellini and Buffon.
Player Position Mean Evolution Defender Heading Goalkeeper Correction Striker
Messi ATT 811.82 27.42 0 0 0 6.03 46.30

Modrić MID 766.61 34.63 26.55 0 0.26 9.70 14.88

Chiellini DEF 572.59 14.92 56.53 21.05 5.55 17.24 7.81

Buffon GK 98.32 12.17 7.62 4.52 75.19 2.06 29.51

Lionel Messi His coefficients for the mean term (811.82) and the striker trait
(46.30) are extremely high. This matches his reputation as one of the best
offensive soccer players ever. His coefficients for the defender, heading and
goalkeeper traits are equal to zero, which also matches his playing style and
small stature.

Luka Modrić With midfielders being a combination of attackers and defenders,
there is no real midfielder trait in the CPD. The Croatian player does not
possess particularly high coefficients for any of the traits compared to other
players, but is reasonably strong in all of them, except for heading.

Giorgio Chiellini A typical classic defender. With his tall physical presence,
he is good at heading, as illustrated by his high coefficient for the heading
trait (21.05). Compared to Messi, whose coefficient for the heading trait is
zero, Chiellini shows significantly higher ratings than Messi for heading skills
such as Heading Accuracy (83 vs 70) and Strength (89 vs 59).

Gianluigi Buffon Buffon has a low coefficient for the mean (98.32) because
goalkeepers have low ratings for most skills. Naturally, his coefficient for
the goalkeeper trait (75.19) is extremely high compared to the field players.
Having a low value for the coefficient of the mean can cause other coefficients
to have illogical values; a small peak in any non-goalkeeper skill has to be
fitted by a non-goalkeeper trait with a large coefficient. As an example,
Buffon has a strong value for the striker trait (29.51) but that does not
make him a good striker. Interpreting the values of non-goalkeeper traits for
goalkeepers is often not useful.

4 Predicting Skill Ratings using Tucker Decomposition

Discovering underlying patterns in player data is certainly interesting from a
research perspective. However, a more interesting direction from an application
perspective is predicting a player’s evolution, as this can directly influence de-
cision making on player acquisition and player retainment. Our task is then the
following:
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Given: Skill ratings of players for ages [h1..hk]
Predict: Skill ratings of the same players for ages [hk+1..hN ]

We address this task by learning latent structures in a full tensor with training
data for ages [h1..hN ] using the Tucker decomposition. Unlike the CPD, the
factor matrices of this decomposition are less intuitive as they are not unique.

4.1 Tucker Decomposition Theory

The multilinear multiplication is a tensor multiplication in which a tensor is
multiplied with a matrix in each mode [4]. The multilinear multiplication in
which a tensor A ∈ Rn1×n2×n3 is multiplied in each mode i by matrix Mi ∈
Rmi×ni , is denoted by

(M1,M2,M3) · A ∈ Rm1×m2×m3 .

The Tucker decomposition can be seen as a higher-order analogue of the
principal component analysis [8]. In this decomposition, a tensor A ∈ Rn1×n2×n3

is factorized in a core tensor S ∈ Rr1×r2×r3 multiplied with factor matrices along
each mode. In the three-dimensional case, the factorization is

A = (U1, U2, U3) · S,

with A ∈ Rn1×n2×n3 the original tensor, S ∈ Rr1×r2×r3 the core tensor and
U1 ∈ Rn1×r1 , U2 ∈ Rn2×r2 , U3 ∈ Rn3×r3 the factor matrices.

If ni > ri, i = 1, 2, 3, the core tensor S can be seen as a compressed version
of the tensor A. It describes how and to which extent the elements of the tensor
interact with each other using the factor matrices.

4.2 Predicting skill ratings

Given the full data tensor A ∈ Rptotal×M×N with ptotal players, M skills and
the data from age h1 until hN , the tensor is split into a training tensor Atrain ∈
Rptrain×M×N with ptrain players and a test tensor Atest ∈ Rptest×M×N with ptest
players, such that ptotal = ptrain + ptest. From the test set, only the first hk ages
are used. The predictions are made for the ages [hk+1..hN ].

In order to make predictions, a model has to be trained first. Unlike most
learning algorithms, there are no iterative steps in which a model is trained.
The latent structures are extracted by computing a single decomposition. Our
approach consists of the following three steps (see Figure 3).

1. Extracting latent structures The latent structures of the data are ex-
tracted using the Tucker decomposition on the training tensor Atrain. These
structures are represented by the factor matrices of the decomposition; Û1

for the player factor matrix, Û2 for the skill factor matrix and Û3 for the age
factor matrix (Figure 3a).
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2. Finding the player factor matrix We find a player factor matrix Û test
1

such that the test tensor Atest is best approximated by a Tucker decomposi-
tion using the core Ŝ, the skill factor matrix Û2 and the truncated age factor
matrix Û trunc

3 using only the rows of ages [h1..hk] from the train tensor Atrain

(Figure 3b). Finding this player factor matrix can be reduced to solving a
least-squares problem.

3. Completing the test tensor We can now complete the missing data in
Atest by multiplying the player factor matrix Û test

1 with the core Ŝ, the

skill factor matrix Û2, and the other part of the age factor matrix Ûother
3

corresponding to the ages [hk+1..hN ] (Figure 3c).

Atrain ≈ Û1 Ŝ

Û3

Û2

(a) The Tucker decomposition of the training tensor Atrain is computed. The ith row of

the player factor matrix, Û1, corresponds to the data of the ith player in the training
tensor.

Atest ≈ Û test
1 Ŝ

Û trunc
3

Û2

(b) Given Atest containing the data for ages [h1..hk] of the test players, core tensor Ŝ,

skill factor matrix Û2 and the truncated age factor matrix Û trunc
3 , the coefficients for

all players in the test set, Û test
1 , are computed.

P

≈ Û test
1 Ŝ

Ûother
3

Û2

(c) With Û test
1 computed, the predictions P are now calculated by using the multilinear

multiplication with Ûother
3 : P = (Û test

1 , Û2, Û
other
3 ) · Ŝ.

Fig. 3: The three steps of our tensor-based method to predict skill ratings.
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4.3 Experiments

To evaluate how well our tensor-based method can predict future skill ratings, we
address three different instances of our prediction task. hk : [hk+1..hN ] denotes
the task of using data of the players at age hk to predict their skill ratings at the
ages [hk+1..hN ]. We predict the evolution of young players (18 : [19..26]), mid-
career players (23 : [24..31]), and older players (26 : [27..34]). The goalkeeper
skills GK Diving, GK Handling, GK Kicking, GK Positioning, and GK Reflexes
are disregarded, as these skills are irrelevant for most players.

For each task, we report the mean absolute error (MAE) over all players over
all skills over ages [hk+1..hN ] and compare our tensor-based method against two
baseline models. The first baseline model predicts players to have no evolution
at all, i.e., we use a player’s skill ratings at age hk as the predictions for his
skill ratings at ages [hk+1..hN ]. The second baseline model uses the well-known
k-nearest neighbors algorithm (KNN) in which the predictions are made using
the k closest neighbors in the data set. The results can be found in Table 2.

Prediction method 18 : [19..26] 23 : [24..31] 26 : [27..34]
No evolution baseline 10.45 8.23 6.90

KNN baseline (k = 10) 8.31 7.82 7.67
Tensor-based method 8.57 7.71 6.74

Table 2: The mean absolute error of the models for the three prediction tasks.

If we focus on short-term predictions (1-2 years into the future), then the no
evolution model shows the best performance. This is expected, as soccer players
tend to improve gradually and thus show little evolution over 1-2 years. If we
focus on long-term predictions (5-7 years into the future), then KNN shows
the best performance. This matches the observations of Vroonen et al. who
showed the superiority of KNN over the no evolution baseline for long-term
predictions [9]. Our tensor-based method seems to hit a sweet spot between
these two prediction methods, as evidenced by its lowest overall MAE for two of
the three prediction tasks in Table 2.

Note that the predictions in our experiments are based on only one year
of data. The performance of the tensor-based method degrades if we use more
than one year of data. We can think of two reasons for this. First, the algorithm
to decompose a tensor aims to optimally compress the entire data set and not
necessarily to optimally predict missing data for certain ages. There is thus
a technical misalignment between our prediction task and the task that the
tensor decomposition is solving. Fixing this technical misalignment could be
interesting future work. Second, skill ratings barely change in one or two years.
Hence, taking three years instead of one year, for example, does not add much
more information to the prediction model. Vroonen et al. [9] also came to the
conclusion that increasing the number of years of given data to make predictions,
has a limited effect on performance.
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5 Conclusions

In this paper, we made three contributions to the field of soccer analytics. First,
we highlighted a variety of challenges that arose while processing the SoFIFA
data. Second, we explored the SoFIFA data tensor using the canonical polyadic
decomposition (CPD) in order to extract interpretable latent structures. We
showed how these latent structures group together related skills, how they evolve
over players’ ages, and how each player can be summarized as a linear combina-
tion of these latent structures. Third, we employed the Tucker decomposition of
a tensor in order to project how a specific player’s skills will evolve as he ages.
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