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Abstract. Analyzing playing style is a recurring task within soccer ana-
lytics that plays a crucial role in club activities such as player scouting
and match preparation. It involves identifying and summarizing proto-
typical behaviors of teams and players that reoccur both within and
across matches. Current techniques for analyzing playing style are often
hindered by the sparsity of event stream data (i.e., the same player rarely
performs the same action in the same location more than once). This
paper proposes SoccerMix, a soft clustering technique based on mixture
models that enables a novel probabilistic representation for soccer actions.
SoccerMix overcomes the sparsity of event stream data by probabilisti-
cally grouping together similar actions in a data-driven manner. We show
empirically how SoccerMix can capture the playing style of both teams
and players and present an alternative view of a team’s style that focuses
not on the team’s own actions, but rather on how the team forces its
opponents to deviate from their usual playing style.

1 Introduction

Style of play, which refers to the behavior on the field of the teams and players
during a game, is an important concept in soccer. There is substantial value
in gaining a better understanding of playing style as this can be leveraged in
areas such as player scouting and match preparation. Because simple descriptive
statistics such as pass completion percentage or shot count are usually insufficient
to capture playing style, media and fans have traditionally assessed playing style
via manual video analysis. However, the advent of novel data sources such as
optical tracking and event stream data have motivated an explosion of interest
in applying automated techniques to try to glean insights into both player and
team behaviors [2, 5, 7–10, 16, 18].

Because it is much more widely accessible than optical tracking data, most
techniques focus on analyzing event stream data which describes all on-the-
ball actions performed by players during a match. Vendors such as WyScout,
StatsBomb, and Opta collect this data using human annotators. While watching
video feeds of soccer match, annotators record attributes such as the timestamp,
location, type (e.g., pass, dribble, shot), involved player, etc. per on-the-ball
action. Depending on the type of the action, the annotator also collects additional
information such as the end location of a pass or the outcome of a tackle.
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Analyzing the playing style of a team or player based on event stream data
often involves constructing a so-called fingerprint of that team or player which
summarizes their actions and captures distinguishing behaviors such as where
on the field they tend to perform certain actions. This is often done by dividing
actions into groups of similar actions and counting how often players or teams
perform actions within each group. However, assessing similarity is difficult
because actions are described by various attributes (e.g., type, location) which
lay in different domains (e.g., discrete, continuous).

One approach is to lay a grid over the field and proclaim two actions to be
similar when they are of the same type and fall in the same grid cell [5, 7, 16, 17].
However, this approach has three downsides. First, the somewhat arbitrary and
abrupt boundaries between grid cells can make certain spatially close actions
appear dissimilar. Second, choosing the best resolution for the grid is non-trivial
as a coarse grid ignores important differences between locations, while a more
fine-grained grid will drastically increase the sparsity of the data as a smaller
number of actions will fall in a single grid cell. Third, ideally we would like to
group actions on additional attributes such as ball direction, but considering
more attributes makes each action more unique, which increases the sparsity in
the data. Hence, most approaches only include one or two attributes in their
analysis [2, 7, 14]. Rarely do approaches consider three or more attributes [8, 17].

In this paper, we make three contributions. Our first contribution is Soccer-
Mix, a novel mixture-model approach for analyzing on-the-ball soccer actions
that addresses the shortcomings of grid-based approaches. On the one hand, it
alleviates the problem of sparsity by grouping actions in a data-driven manner.
On the other hand, SoccerMix’s probabilistic nature alleviates the issues of the
arbitrary and abrupt boundaries imposed by grid cells. More uniquely, SoccerMix
also considers the direction that actions tend to move the ball in, which is an
important property for capturing style of play that has received little attention
thus far. For example, it allows distinguishing among players or teams that play
probing forward passes versus those that play safer lateral passes in a specific
zone of the pitch. Intuitively, the action groups produced by SoccerMix can be
thought of as describing prototypical actions of a certain type, location, and
direction. Our second contribution is that we provide a number of use cases that
illustrate how SoccerMix can aid in scouting and match analysis by capturing
the playing styles of both teams and players. In contrast to existing approaches
which solely focus on the offensive style of a team, SoccerMix can also yield
insights into a team’s defensive style. Specifically, we model how a team can force
its opponent to deviate from its typical style of play. Our third contribution is
that we provide a publicly available implementation of SoccerMix.1

2 Methodology

Our goal is to capture the playing style of either a player or a team. As in past
papers [7, 10, 16, 17], our intuition is that playing style is tied to where on the

1 https://github.com/ML-KULeuven/soccermix
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pitch a player (or team) tends to carry out certain types of actions. Most playing
style analysis techniques follow the same two-step approach:

Step 1: Partition all on-the-ball actions into groups of similar actions and
represent each action by its membership to one or more of these groups.

Step 2: Transform the group membership counts of a player’s or team’s actions
into a human-interpretable summary of playing style.

Traditionally, most research has focused on the second step [5, 7, 8, 16]. However,
picking sub-optimal groups in the first step can introduce significant problems
such as sparsity down the line. In fact, many sophisticated data aggregation
methods such as pattern mining [8] and matrix factorizaton [7] are often only
used in step two to combat the problems introduced by the sub-optimal groups
established in the first step.

In this paper, we attempt to tackle the first step in a more intelligent manner
than before in order to greatly simplify the second step. More specifically, we aim
to find groups of similar actions such that players’ or teams’ group membership
counts are already human-interpretable and informative of playing style. This
way, no additional sophisticated transformation is needed in step two. Finding
these groups of similar actions involves answering four questions:

1. Which properties of actions are relevant for capturing playing style?
2. How can we group actions based on both discrete and continuous properties?
3. How can we prevent sparsity (many groups with little or no actions in them)?
4. How can we group actions based on properties with different notions of

similarity (e.g., linear data vs. circular data)?

2.1 Describing Actions

Various companies provide event stream data and each one uses a different format,
has varying definitions of events, and records different sets of events. Moreover,
the data also contains extraneous information such as changes in weather that are
not crucial for analysis. The SPADL representation [6] addresses these concerns
by converting event streams to a uniform representation designed to facilitate
analysis.2 Hence, we first transform our data into this format.

Typically, playing style analysis focuses on action types and locations. One
piece of data that is important for style of play that has received little attention
is the direction of actions. For example, it is important to differentiate among
players who tend to play probing forward passes versus those that tend to play
safer, lateral passes. Unfortunately, the direction of the ball is only implicitly
present in the SPADL representation through the start and end locations of
actions. Therefore, in this paper, we post process SPADL’s output and represent
each action as a tuple (t, x, y, θ) where t is the type of the action (e.g., shot, tackle,
pass, receival), x ∈ [0, 105] (meters) and y ∈ [0, 68] (meters) denote the location
on the field where the action happened, and θ ∈ [−π, π] (radians) denotes the
direction the ball travels in following the action (Fig. 1).

2 https://github.com/ML-KULeuven/socceraction
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Fig. 1. This phase of Liverpool scoring a goal illustrates the event stream data used in
this paper. Actions are described by their type t, location (x, y), and direction θ.

2.2 Grouping Actions with Mixture Models

Grouping actions on multiple attributes is non-trivial as it requires fusing together
both discrete attributes (i.e., the action type) and continuous attributes (i.e., the
location and direction). Past work has mostly ignored direction and focused on
fusing action type and location. The most common approach is to lay a grid over
the field and for each action type count the number of times it occurs in each
zone [7, 16, 17]. However, this approach has two significant problems. First, this
approach ignores the fact that some actions only ever occur in certain areas of
the pitch (e.g., throw-ins only occur on the outer edges of the field, shots typically
only occur on the attacking half of the field). Second, the boundaries between grid
cells are arbitrary and abrupt, which can disrupt the spatial coherence. This can
make some actions that occurred in nearby locations appear dissimilar because
they fall in different location groups.

This paper takes a different approach and uses mixture models to cluster
actions. Mixture models are probabilistic models that assume that all the data
points are generated from a mixture of a finite number of distributions with
unknown parameters [12]. Formally, a mixture model calculates the probability
of generating observation x as:

p(x) =

k∑
j=1

αj · Fj(x|Θj) (1)

where k is the number of components in the mixture model, αj is the probability of
the jth component, and Fj is a probability distribution or density parameterized
by Θj for the jth component. Intuitively, mixture models can be thought of as
a soft clustering variant of k-means clustering. Mixture models address all the
drawbacks of the grid-based approach. First, they perform a more data-driven as
opposed to hand-crafted partitioning of the pitch. This results in a more nuanced
partitioning as the mixture model can learn a more fine-grained representation
in zones where lots of actions take place and a more course-grained one in zones
where actions are less frequent. Second, by performing a soft grouping each action
has a probability of belonging to each cluster, which alleviates the arbitrariness
of grid boundaries.

SoccerMix hierarchically groups actions with mixture models in two stages:
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Stage 1 For each action type, fit a mixture model to the locations (x, y) of the
actions of that type. This allows SoccerMix to model that certain action
types usually occur in specific areas of the field (e.g., shots only occur close
to the goal, see Fig. 2)

Stage 2 For each component of each mixture model in stage 1, fit a new mixture
model to the directions θ of the actions in that component. This allows
SoccerMix to model that the direction that a specific action tends to move
the ball in, depends on the location where the action occurred (e.g., passes in
central midfield are usually lateral or backwards, rarely forwards, see Fig. 3).

(a) Shot locations (b) The 2D Gaussian distri-
butions learned on shot lo-
cations

(c) Shots colored accord-
ing to the distributions that
most likely generated them.

Fig. 2. Stage 1 of SoccerMix: a mixture model with three 2D Gaussian distributions is
fitted to shot locations.

(a) Passes that start in the
central midfield

(b) The Von Mises distribu-
tions learned on pass direc-
tions

(c) The passes colored ac-
cording to the distribution
that most likely generated
them.

Fig. 3. Stage 2 of SoccerMix: a mixture model with three Von Mises distributions is
fitted to a group of passes that start in the central midfield. In Fig. 3b, component 1
(red) illustrates how a single Von Mises distribution can be fitted to observations close
to −π and π and is thus essential for describing backwards passes.
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2.3 Distributions of Locations and Directions

The next question to consider is which distributions to use as the components
of the mixture models. Locations and directions require a different notion of
similarity. In the spatial domain, nearby locations are similar, which we can
naturally model using a 2D Gaussian distribution (Fig. 2) [15]:

pdf(x) =
1√

(2π)2|Σ|
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(2)

where µ is the mean and Σ is the covariance matrix of the distribution.
When viewed as directions, −π + ε1 and π − ε2 are similar because directions

can be seen as values on a circle rather than on a line. However, a Gaussian
distribution would not consider these directions to be similar. Therefore, we
model the directions using a Von Mises distribution which arises in the directional
statistics literature [3, 11]. Unlike a Gaussian, Von Mises distributions allow for
the possibility that observations close to −π and observations close to π can be
generated by the same distribution (Fig. 3). The probability density function of
a Von Mises distribution is:

pdf(θ) =
1

2πI0(κ)
exp (κ cos(θ − µ)) (3)

where µ is the mean direction (the distribution is centered around µ) and κ
is a measure of concentration (κ = 0 means that the distribution is uniform
over the circle while a high value for κ means that the distribution is strongly
concentrated around the angle µ). Finally, I0(κ) is the modified Bessel function
of order 0, whose exact definition lies beyond the scope of this paper [11].

2.4 Fitting a mixture model to the data

Fitting the parameters of a mixture model to a data set is typically done using
the Expectation Maximization algorithm [1]. Given n observations {x1, . . . , xn},
k distributions {F1, . . . , Fk}, and nk latent variables rij which denote how likely
it is that distribution Fj generated observation xi, the algorithm iteratively
performs the following two steps:

Expectation For each observation xi and distribution Fj , compute the respon-
sibility rij , i.e., how likely it is that Fj generated xi:

rij = αj · Fj(xi|Θj).

Maximization For each distribution Fj , compute its weight αj and its parame-
ter set Θj . αj is the prior probability of selecting component j and can be
computed as follows:

αj =

∑n
i=1 rij∑k

j=1

∑n
i=1 rij

.

Θj is the parameter set that maximizes the likelihood of distribution Fj

having generated each observation xi with probability rij . To update Θj , we
employ the distribution-specific update rules detailed below.
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It is straightforward to compute the maximum likelihood estimates for the
Gaussian distribution’s parameter set Θj = {µj ,Σj}:

µj =
1∑n

i=1 r
′
ij

n∑
i=1

r′ij · xi (4)

Σj =
1∑n

i=1 r
′
ij

n∑
i=1

r′ij · (xi − µj)(µj − xi)T (5)

where r′ij is a normalized responsibility computed as:

r′ij =
rij∑k
j=1 rij

.

Computing the maximum likelihood estimates for the Von Mises distributions
is more challenging for two reasons. First, we use the output of the learned location
mixture models as input for the direction mixture models. More specifically, each
observation xi has a respective weight wi = αloc · Floc(xi|Θloc) (where Floc is
the location distribution we wish to further decompose) that represents the
probability of observation xi being part of the input set of observations for the
direction mixture model. These weights wi necessitate slightly altering how the
responsibilities rij are normalized. Second, learning the parameters for a Von
Mises distribution is inherently harder than for Gaussians. Directly estimating
κj is impossible as its exact equations cannot be analytically solved. Luckily, an
approximation using the mean result distance Rj exists that works remarkably
well for many practical purposes (Eq. 7) [11]. We first construct normalized
responsibilities r′′ij that pretend that each observation xi in the data set was
generated by the mixture model with a probability of wi and then update the
parameter set Θj = {µj , κj} as follows:

µj = atan2
(
µsin
j , µcos

j

)
(6)

κj ≈
Rj(2−R2

j )

(1−R2
j )

(7)

where

µsin
j =

1∑n
i=1 r

′′
ij

n∑
i=1

r′′ij · sinxi µcos
j =

1∑n
i=1 r

′′
ij

n∑
i=1

r′′ij · cosxi

Rj =
√

(µsin
j )2 + (µcos

j )2 r′′ij = wi ·
rij∑k
j=1 rij

.

One of the contributions in this paper is that we publicly release our imple-
mentation of mixture models at https://github.com/ML-KULeuven/soccermix.
This implementation supports learning a mixture of any type of distribution from
a weighted input set of observations.
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2.5 Practical Challenges

When applying SoccerMix to real-world event stream data, three practical chal-
lenges arise. First, the locations in event stream data are approximations. For
some actions, such as goal kicks, annotators use a set of predefined start locations
instead of its actual location. Therefore we add random noise to the locations and
directions of actions to ensure that we do not simply recover the annotation rules
for some actions. Second, the mixture models are sensitive to outliers (e.g., actions
with highly irregular locations). Therefore, we preprocess the event stream data
to remove outliers using the Local Outlier Factor algorithm [4]. Third, we need
to select the number of components used in each mixture model. The number
of components needed depends on the action type. For example, passes need
more components than corners; a team can perform passes anywhere on the field,
but they can take corners from only two locations (the corner flags). We select
the number of components in each mixture model by formulating an integer
linear programming problem where the goal is to optimize the total Bayesian
Information Criterion (BIC) of the entire set of mixture models.3

2.6 Capturing Playing Style with SoccerMix

Our goal is to construct a vector that describes a specific player’s or team’s
style. Intuitively, SoccerMix discovers groups of similar actions, where each group
describes a prototypical action of a certain type, location, and direction. Hence,
we can use the learned mixture models to encode each action as a probability
distribution over all prototypical actions and encode this in a weight vector. We
can then build a style vector for a player (team) by summing the weight vectors
of all actions performed by that player (team) in a specific time frame (e.g., a
game or a season). In the style vector, the weight of an action group can be
interpreted as how often a player (team) performed that prototypical action.

3 Experiments

In our experiments, we use event stream data provided by Statsbomb for the
2017/18 and 2018/19 seasons of the English Premier League (EPL). Using 400,000
actions sampled from the 2017/18 season, we fitted 2D Gaussian mixture models
to the locations of the 23 action types to produce 147 location groups. Next,
we fitted Von Mises mixture models to the directions of the actions in those
groups to produce 247 groups that describe prototypical actions of a certain type,
location, and direction (Fig 4). Learning all mixture models took approx. 30
minutes on a computer with 32GB RAM and an Intel i7-6700 CPU @ 3.40GHz
with 8 cores. We used these mixture models to produce weight vectors for ±
2,300,000 actions in 760 games and used those to construct style vectors for 676
players and 23 teams.

3 More details on our approach to select the number of components used in each
mixture model can be found in the public implementation.
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(a) Shots (b) Clearances (c) Throw-ins

(d) Dribbles (e) Interceptions (f) Passes

Fig. 4. Examples of the prototypical actions discovered by SoccerMix. Ellipses denote
2D Gaussian distributions that describe locations. Arrows denote the center of the Von
Mises distributions that describe ball directions. Some action types do not directly
move the ball and are thus only grouped on location (e.g., interceptions in Fig. 4e).

In this section, we first show how the style vectors produced by SoccerMix
can be used to identify players based on their playing style. Next, we show how
to compare the playing styles of teams and players, along with an approach for
capturing the defensive style of teams. Finally, we use our style vectors to take a
closer look at the game that cost Liverpool the title to Manchester City in the
2018/19 season and investigate what exactly went wrong.

3.1 De-anonymizing Players

No objective definition of playing style exists, which creates challenges. Intuitively,
one would expect that in the short-term (i.e., across consecutive seasons) a
player’s style will not change substantially. Based on this insight, Decroos et
al. [7] proposed the following evaluation setup: Given anonymized event stream
data for a player, is it possible to identify the player based on his playing style
in the previous season?

We perform the exact same player de-anonymization experiment as Decroos
et al. and compare SoccerMix to their approach: player vectors based on non-
negative matrix factorization (NMF). For both approaches, we used the actions
of 193 players that played at least 900 minutes in both seasons. Then, for each
player, we create a rank-ordered list of his most similar players by comparing
that player’s style vector constructed over the 2018/19 season to the style vectors
of all players constructed over the 2017/18 season. Table 1 shows how SoccerMix
is more successful than the NMF-based player vectors on nearly all ranking
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metrics. In 48.2% of the cases, SoccerMix correctly identifies a player’s style for
the current season as being most similar to his previous season’s style, which is a
33% relative improvement over the NMF-based approach. Moreover, SoccerMix
has a substantially better mean reciprocal rank than the prior approach for this
task, which suggests that the style vectors of SoccerMix offer a more complete
and accurate view of players’ playing style.

Table 1. The top-k results (i.e., the percentage of players whose 2017/18 style vectors
are one of the k most similar to their 2018/19 style vectors) and the mean reciprocal rank
(MRR) when retrieving 193 players in the English Premier League from anonymized
(season 2018/19) and labeled (season 2017/18) event stream data.

Method Top-1 Top-3 Top-5 Top-10 MRR

SoccerMix 48.2% 62.7% 71.5% 80.8% 0.589
Player Vectors (NMF) 36.5% 53.2% 66.5% 83.2% 0.505

3.2 Comparing the Playing Style of Players

The style vectors produced by SoccerMix can be used to illustrate the differences in
playing style between two players. As an illustrative use case, consider comparing
the playing style of Manchester City forward Sergio Agüero and Liverpool
forward Roberto Firmino who are both world-class center forwards playing for
top teams. Figure 5 illustrates the differences in their style vector for shots,
take-ons, interceptions, passes, dribbles, and receivals during the 2018/19 EPL
season. Spatially, Agüero is more active in the penalty box as he performs more
take-ons, dribbles, and ball receivals in that area than Firmino. In contrast,
Firmino performs these actions more in the midfield. Finally, the interception
map shows that while Agüero does not completely neglect his defensive duties,
Firmino plays a more expansive role that sees him also intercept the ball on
the flanks and near the penalty box. These insights correspond to Agüero’s
reputation of being an out-and-out striker who camps out near the opponent’s
penalty box whereas Firmino often drops deep to facilitate for his attacking
partners Mohammed Salah and Sadio Mané. SoccerMix allows generating such
figures for any two players which has the potential to aid clubs in player scouting
as they can identify players whose style fits how they wish to play.

3.3 Comparing the Playing Style of Teams

SoccerMix’s style vectors can also be used to compare the playing style of teams.
To illustrate this use case, we compare the playing styles of Manchester City and
Liverpool, who both completely dominated the 2018/19 English Premier League,
finishing at the top of the table with 98 and 97 points respectively with a large
25-point gap to distant third contender Chelsea.
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(a) Shots (b) Take-ons (c) Interceptions

(d) Passes (e) Dribbles (f) Receivals

Fig. 5. Differences in playing style between Manchester City forward Sergio Agüero and
Liverpool forward Roberto Firmino during the 2018/19 EPL season. Blue (red) actions
indicate that Agüero (Firmino) performed more of these actions than the other. Both
players are shown as playing left to right (→). Agüero is more active in the penalty
box, while Firmino’s actions are more spread out over the midfield.

Figure 6 shows how Manchester City performs noticeably more take-ons,
passes, dribbles, and receivals in the heart of the opponent’s half compared to
Liverpool. This illustrates how the coaches of both teams have shaped their team’s
playing style to their own soccer philosophy. Under Jürgen Klopp, Liverpool have
perfected the art of frequent counter-pressing and speedy counter-attacks. Under
Pep Guardiola, Manchester City at times mimics the possession-based, tiki-taka
style of its coach’s ex-club (FC Barcelona), passing and moving the ball high up
on the field.

Additionally, Liverpool seems to funnel the play towards their right side,
performing noticeably more clearances, take-ons, and interceptions on their
right flank. The most likely source of this uptick is Trent Alexander-Arnold,
a right-back at Liverpool who is widely regarded as one of the best attacking
full-backs in professional soccer and is a spearhead of Liverpool’s transitional,
counter-attacking style of play.4

4 https://sport.optus.com.au/articles/os6422/trent-alexander-arnold-is-

changing-the-full-back-position
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(a) Clearances (b) Take-ons (c) Interceptions

(d) Passes (e) Dribbles (f) Receivals

Fig. 6. Differences in playing style between Manchester City and Liverpool during the
2018/19 EPL season based on the prototypical action groups obtained with SoccerMix.
Blue (red) actions indicate that Manchester City (Liverpool) performed more of these
actions than the other team. Both teams are shown as playing left to right (→). Liverpool
funnels play towards their right side, while Manchester City generally plays higher up
the field.

3.4 Capturing the Defensive Playing Style of Teams

Approaches that capture playing style usually focus on offensive playing style,
i.e., what does a team do when in possession of the ball? Analyzing defensive
style is much harder as it involves off-the-ball actions such as correct positioning
and putting pressure on attackers, which are not recorded in event streams. Our
insight is that these off-the-ball actions are often performed with the intention
of preventing certain actions from occurring. This suggests that we can gain a
partial understanding of defensive style by measuring the effects that a team’s
off-the-ball actions have on what on-the-ball actions their opponent performs.
More precisely, we analyze how a team forces its opponents to deviate from their
usual playing style.

To illustrate this, we measure the mean difference between teams’ style vectors
constructed using (1) only the matches against Liverpool and (2) all other matches
(i.e., those not involving Liverpool). Figure 7 shows how Liverpool causes their
opponents, playing left to right, to be flagged more for offside than is typical.
This indicates a well-synchronized line of defense that employs a very effective
offside trap. The crosses show that, although Liverpool limits the number of
crosses its opponents perform, this restriction is not symmetric: they allow fewer
crosses from the left of defense (the offense’s right) than the right. Lastly, as a
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combination of both offensive and defensive playing style, Liverpool generally
forces the other teams to play more on their own half than on Liverpool’s half.

(a) Opponents’ offsides (b) Opponents’ crosses (c) Opponents’ passes

Fig. 7. Illustrations of how Liverpool (a) employs a good offside trap, (b) has a weaker
defense at their right flank when it comes to preventing their opponents from crossing
the ball, and (c) forces other teams to play more on their own half. Blue (red) indicates
that teams perform more (fewer) of these actions when playing against Liverpool.

3.5 Case Study: How Liverpool Lost the Title to Manchester City
in a Single Game

On January 3rd, 2019, Liverpool held a 6 point lead atop the EPL table when
they traveled to play Manchester City in a highly anticipated match. Alas, in
their only league loss of the season, Liverpool fell 2-1 and ended up missing out
on the title to Manchester City by a single point. It is not a stretch to say that
this was the game that cost them the title. Using the concept of style difference
vectors from the previous section, Figure 8 illustrates how Liverpool’s playing
style in this game drastically deviated from how they played against other teams.
In short, Manchester City maintained their typical high defensive line and forced
Liverpool to remain on their own side of the field. This is apparent in both the
higher number of passes, dribbles, and receivals Liverpool had to perform deep in
their own half as well as the fact that they performed significantly fewer actions
than normal in Manchester City’s half.

While interesting, it is not completely surprising that Liverpool’s offensive
output suffered against its only decent rival that season, Manchester City. To dig
deeper, we adjust for the level of the opponent and compare Liverpool’s playing
style in their away game (loss) and home game (draw) against Manchester City
in 2018/19 (Fig. 9). In its away game, Liverpool made noticeably less use of
its left flank, performing fewer passes, dribbles, and receivals in that area. This
suggests that Liverpool’s left flank players were not functioning very well that
game, which is further evidenced by midfielder James Milner and winger Sadio
Mané on Liverpool’s left flank being substituted out in the 57th and 77th minute
of the game.
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(a) Passes (b) Dribbles (c) Receivals

Fig. 8. Differences in Liverpool’s playing style during their lost away game against
Manchester City compared to their style when playing against all other teams in the
2018/19 EPL. Blue (red) indicates Liverpool performing more (fewer) of these actions
in their away game against Manchester City. The direction of play is left to right (→).

(a) Passes (b) Dribbles (c) Receivals

Fig. 9. Differences in Liverpool’s playing style between their away game and their home
game against Manchester City in the 2018/19 EPL. Red (blue) indicates fewer (more)
of these actions in the away game than in the home game. Liverpool’s left flank players
were having a bad day in the away game, as evidenced by the fewer passes, dribbles,
and receivals in that area than normal.

4 Related work

Many approaches group actions by overlaying a grid on the field [7, 8, 16]. How
they differ is in how they combat the challenges associated with this grid. Decroos
et al. [8] avoid the sparsity issues of a fine-grained grid by dividing the field
into only four zones (left-flank, midfield, right-flank, and penalty box), as the
performance of their pattern mining algorithm rapidly declined when using a more
fine-grained grid. However, their patterns can then only describe ball movements
between these four zones and are thus too broad and simple to be able to identify
unique characteristics related to playing style. Van Haaren et al. [16] attempted
to combine the advantages of both coarse and fine-grained grids by encoding
action locations on multiple granularity levels. However, they found that this
multi-level representation of actions blew up the search space of their inductive
logic programming approach and led to heavy computational costs.

Decroos and Davis [7] apply a post-processing step to the counts of a fine-
grained grid. More specifically, the count of each grid cell is replaced by a weighted
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mean of itself and its neighboring grid cells, which promotes spatial coherence
between grid cells and combats issues such as sparsity and abrupt boundaries.
However, there are two downsides to this approach. First, a new technique with
its own parameters (that are non-trivial to tune) is added to the analysis pipeline.
Second, this approach encourages dividing actions into a number of groups that is
excessive for representing the characteristics of the data, which makes it difficult
for automated systems to numerically process the new data representation and
for humans to interpret the end results. For example, Decroos and Davis use
50 × 50 grid cells to represent shot behavior of players (of which most will be
empty), while SoccerMix only needs 3 location groups to represent shot behavior.

5 Conclusion

Capturing the playing style of teams and players in soccer can be leveraged in
areas such as player scouting and match preparation. In this paper we introduced
SoccerMix: an approach to intelligently partition player actions into groups of
similar actions. Intuitively, each group describes a prototypical action with a
specific type, location, and direction. We have shown how SoccerMix can be used
to capture the playing style of both teams and players. Additionally, we introduced
a new way to capture the defensive playing style of a team by using deviations
in the actions of that team’s opponents. Finally, we have publicly released
SoccerMix’s implementation at https://github.com/ML-KULeuven/soccermix.
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