Predicting the potential of professional soccer players

Ruben Vroonen Tom Decroos Jan Van Haaren Jesse Davis

MLSA17 @ ECML/PKDD17 18/09/2017 Predicting the potential of professional soccer players

Ruben Vroonen Tom Decroos Jan Van Haaren Jesse Davis

MLSA17 @ ECML/PKDD17 18/09/2017

Meet Bob, a young professional soccer player

Bob Age: 19 Year: 2017

Bob has a set of skill ratings

Attacking: 75/100 Defending: 67/100 Stamina: 50/100 Intelligence: 72/100

Meet Bob from the future

Bob Age: 19 Year: 2017

Bob Age: 21 Year: 2019

Attacking: 75/100 Defending: 67/100 Stamina: 50/100 Intelligence: 72/100

What are his skill ratings?

Bob Age: 19 Year: 2017

Bob Age: 21 Year: 2019

Attacking: 75/100 Defending: 67/100 Stamina: 50/100 Intelligence: 72/100 Attacking: ?/100 Defending: ?/100 Stamina: ?/100 Intelligence: ?/100 Overview

Related Work PECOTA and CARMELO

Data SoFIFA.com ratings

APROPOS Our approach for predicting players' potential

Experiments Evaluating the predictive accuracy Overview

Related Work
PECOTA and CARMELO

Data SoFIFA.com ratings

APROPOS Our approach for predicting players' potential

Experiments Evaluating the predictive accuracy Similar systems have already been deployed in baseball (1) and basketball (2)

(1) PECOTA

Player Empirical Comparison Analysis Test Algorithm

Nearest neighbors analysis on player statistics using Bill James's similarity scores

(2) CARMELO

Career-Arc Regression Model Estimator with Local Optimization

Nearest neighbors analysis on Wins Above Replacement (WAR) using simple similarity score Overview

Related Work
PECOTA and CARMELO

Data SoFIFA.com ratings

APROPOS Our approach for predicting players' potential

Experiments Evaluating the predictive accuracy

A player card from SoFIFA.com contains 24 skill ratings for a specific player and age

Competitions:

England, France, Germany, Italy and Spain

Stats:

- 10,000 players
- 57,000 player cards
- Data from 2007-2017

Preprocessing challenges:

- Incorrect or missing age
- Position of substitute players

The most interesting categories (young and old players) have the least available data

Most skill ratings follow a normal distribution...

... except goalkeeping skills

Overview

Related Work PECOTA and CARMELO

Data SoFIFA.com ratings

APROPOS Our approach for predicting players' potential

Experiments Evaluating the predictive accuracy Reminder: our task is to predict the skill ratings of future Bob

Bob Age: 19 Year: 2017

Bob Age: 21 Year: 2019

Attacking: 75/100 Defending: 67/100 Stamina: 50/100 Intelligence: 72/100 Attacking: ?/100 Defending: ?/100 Stamina: ?/100 Intelligence: ?/100

Given:

- a player p and his current age a_1
- a future age a_2
- a database of players D

Then:

- 1. Search players in *D* that are similar to p at age a_1 and have data available for age a_2 .
- 2. Predict the rating of p at age a_2 by combining the ratings of similar players at age a_2 .

Given:

- a player p and his current age a_1
- a future age a_2
- a database of players D

Then:

- 1. Search players in *D* that are similar to p at age a_1 and have data available for age a_2 .
- 2. Predict the rating of p at age a_2 by combining the ratings of similar players at age a_2 .

Given:

- a player p and his current age a_1
- a future age a_2
- a database of players D

Then: Similarity score

- 1. Search photers in *D* that are similar to *p* at age a_1 and have data available for age a_2 .
- 2. Predict the rating of p at age a_2 by combining the ratings of similar players at age a_2 .

Given:

- a player p and his current age a_1
- a future age a_2
- a database of players D

Then: Similarity score

- 1. Search photers in *D* that are similar to *p* at age a_1 and have data available for age a_2 .
- 2. Predict the rating of p at age a_2 by combining the ratings of similar players at age a_2 .

Given:

- a player p and his current age a_1
- a future age a_2
- a database of players D
- Then: Similarity score
- 1. Search photers in *D* that are similar to retain and have data **Prediction method**
- 2. Predict the ratio of p at age a_2 by combining the ratings of similar players at age a_2 .

Given:

- a player p and his current age a_1
- a future age a_2
- a database of players D

Then: Similarity score

Absolute

2. Predict the ration of p at age a_2 by **Evolutional** combining the ratings of similar players at age a_2 .

	Bob			Alice		
Age	17	18	19	17	18	19
Dribbling score	68	72	78	81	82	85

	Bob			Alice		
Age	17	18	19	17	18	19
Dribbling score	68	72	78	81	82	85

 $f(Bob, Alice) = \sqrt{}$

	Bob			Alice		
Age	17	18	19	17	18	19
Dribbling score	68	72	78	81	82	85
f(Bob, Alice)	[6	8 - 81)	2			

	Bob			Alice				
Age	17	18	19	17	18	19		
Dribbling score	68	72	78	81	82	85		
f(Bob, Alice)	$=\sqrt{6}$	8 - 81)	$^{2} + (72)$	$(-81)^2$				

	Bob			Alice		
Age	17	18	19	17	18	19
Dribbling score	68	72	78	81	82	85
f(Bob, Alice)	$=\sqrt{6}$	8 - 81)	2 + (72)	$(-81)^2$	+ (78 -	- 85) ²

	Bob			Alice		
Age	17	18	19	17	18	19
Dribbling score	68	72	78	81	82	85

	Bob			Alice		
Age	17	18	19	17	18	19
Dribbling score	68	72	78 6	81 +	82	85

The similarity score between players is computed as the average over all skills

$$sim(p,p') = \frac{\sum_{v \in V} sim_v(p,p')}{|V|}$$

The similarity score between players is computed as the average over all skills

Total similarity between 2 players $sim(p,p') = \frac{\sum_{v \in V} sim_v(p,p')}{|V|}$ The similarity score between players is computed as the average over all skills

The similarity score between players is computed as the average over all skills

APROPOS follows a nearest neighbors approach

Given:

- a player p and his current age a_1
- a future age a_2
- a database of players D

Then: Similarity score

Absolute

2. Predict the ratio of p at age a_2 by **Evolutional** combining the player ratings at age a_2 .

We want to predict Bob's dribbling rating at age 21

	Bob				
Age	19	21			
Dribbling	78	?			

Alice is a similar player to Bob for whom we have historical data

	Bo	ob	Alice		
Age	19	21	19	21	
Dribbling	78	?	85	86	

Sim(Bob, Alice) = 0.7

Eve is also a similar player to Bob for whom we have historical data

	Bob		Alice		Eve	
Age	19	21	19	21	19	21
Dribbling	78	?	85	86	64	75

The absolute prediction method uses the skill ratings of similar players

	Bob		Alice		Eve	
Age	19	21	19	21	19	21
Dribbling	78	?	85	86	64	75

The absolute prediction method uses the skill ratings of similar players

	Bob		Alice		Eve	
Age	19	21	19	21	19	21
Dribbling	78	?	85	86	64	75

Sim(Bob, Alice) Sim(Bob, Eve)= 0.7 = 0.8

Dribbling prediction =

The absolute prediction method uses the skill ratings of similar players

	Bob		Alice		Eve	
Age	19	21	19	21	19	21
Dribbling	78	?	85	86	64	75

Dribbling prediction =
$$\frac{0.7 * 86 + 0.8 * 75}{0.7 + 0.8} = 80$$

	Bob		Alice		Eve	
Age	19	21	19	21	19	21
Dribbling	78	?	85	86	64	75

	Bob		Alice		Eve	
Age	19	21	19	21	19	21
Dribbling	78	?	85	86	64 +1	75

	Bob		Alice		Eve	
Age	19	21	19	21	19	21
Dribbling	78	?	85 +	86	64 +1	75

Sim(Bob, Alice) Sim(Bob, Eve)= 0.7 = 0.8

Dribbling prediction = 78 + -

	Bob		Alice		Eve	
Age	19	21	19	21	19	21
Dribbling	78	?	85	86	64 +1	75

Dribbling prediction =
$$78 + \frac{0.7 * 1 + 0.8 * 11}{0.7 + 0.8} = 84$$

Overview

Related Work PECOTA and CARMELO

Data SoFIFA.com ratings

APROPOS Our approach for predicting players' potential

Experiments Evaluating the predictive accuracy

We predict skill ratings for 1000 players in 2012

Similarity period Prediction period = 3 years = 1 year

 $\ldots \ 2009 \ 2010 \ 2011 \ 2012 \ 2013 \ 2014 \ldots$

We compare 2 baseline models against 3 instances of APROPOS

- 1. Baseline 1: average skill rating of age group
- 2. Baseline 2: current skill rating as prediction
- 3. ABS-ABS
- 4. ABS-EVO
- 5. EVO-EVO

APROPOS performs better than baseline 1 and roughly equal to baseline 2.

APROPOS beats Baseline 2 when predicting farther in the future

The nb of years used to compute player similarity has little effect on performance

Predicting the potential of professional soccer players is an interesting task.

APROPOS solves this task using a nearest neighbors approach.

The best results are obtained by combining player-specific info with population-based info.